
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Computational Modeling of

FASN Metabolic Pathway and

Drug Cocktail Design

by

Sehar Aslam

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Computing

Department of Bioinformatics and Biosciences

2018

file:www.cust.edu.pk
file:www.cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


i

Copyright c© 2018 by Ms. Sehar Aslam

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.



ii

First of all, I dedicate this research project to Allah Almighty, The most merciful

and beneficent, creator and Sustainer of the earth, He is the God the One God,

the Everlasting, who has not begotten, nor has been begotten, and equal to Him is

not anyone.

And

Dedicated to Prophet Muhammad (peace be upon him) whom, the world where we

live and breathe owes its existence to his blessings, the pinnacle of human

perfection, the scorer of humanity, the gem of mankind, the ruby of the universe,

the Sultan of creation, the unparalleled, the unrivaled, the infallible.

And

Dedicated to my parents and brothers, who pray for me and always pave the way

to success for me.

And

Dedicated to my teachers, who are a persistent source of inspiration and

encouragement for me.



CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY

ISLAMABAD

CERTIFICATE OF APPROVAL

Computational Modeling of FASN Metabolic Pathway and

Drug Cocktail Design

by

Sehar Aslam

(MBI161001)

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Maria Shabbir NUST, Islamabad

(b) Internal Examiner Dr. Shoukat Iqbal CUST, Islamabad

(c) Supervisor Dr. Sahar Fazal CUST, Islamabad

Dr. Sahar Fazal

Thesis Supervisor

March, 2018

Dr. Aamer Nadeem Dr. Muhammad Abdul Qadir

Head Dean

Dept. of Bioinformatics and Biosciences Faculty of Computing

March, 2018 March, 2018



iv

Author’s Declaration

I, Sehar Aslam hereby state that my MS thesis titled “Computational Mod-

eling of FASN Metabolic Pathway and Drug Cocktail Design” is my own

work and has not been submitted previously by me for taking any degree from

Capital University of Science and Technology, Islamabad or anywhere else in the

country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

(Sehar Aslam)

Registration No: MBI161001



v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Computational

Modeling of FASN Metabolic Pathway and Drug Cocktail Design” is

solely my research work with no significant contribution from any other person.

Small contribution/help wherever taken has been dully acknowledged and that

complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Sehar Aslam)

Registration No: MBI161001



vi

Acknowledgements

By the grace of Allah Almighty, the Most Beneficent, the Most Merciful, all the

praises and thanks be to Allah, the Lord of the Alamin (Mankind, Jinns and all

that exists), the Most Beneficent, the Most Merciful, the Only Owner of the Day

of Recompense (i.e. The Day of Resurrection). I have been able to accomplish

this research work and come up with final dissertation work which is necessary for

the award of the degree of Masters in Bioinformatics.

The completion of this task was not easy, but it required troublesome efforts

and hard work. I would like to say special thanks to my supervisor Dr. Sahar

Fazal whose complete guidance has contributed a lot in the accomplishment of

this research project. I appreciate the time she gave me for my research project. I

would also like to say thanks to my co-supervisor Dr. Aamer Nadeem for providing

me a unique idea and related books for my research project, and for the time, that

he spent on the proofreading of my thesis.

I am very thankful to my Parents who supported me emotionally and financially,

my Brother for providing a great platform and confidence for improving myself and

my career and thanks to my sister for her moral support and bundle of prayers.

I would like to say special thanks to my friend Ms. Anum Munir for help and

support in my thesis. I am also thankful to Dr. Aamer Iqbal Bhatti, Mr.Sammar

Zaman and Ms. Shumaila Azam who were always there for me to pray whenever

I need. Due to their prayers today I am able to accomplish my research.

Further, I would like to thank the faculty members and friends in the Department

of Bioinformatics and Biosciences at Capital University of Science and Technology,

Islamabad.

Thanks to all.



vii

Abstract

With the advancement of comprehension of cancer genes, focused on drugs pointed

particularly at genes whose secretions are engaged in cancer pathogenesis to have

reformed the idea of cancer treatment. FASN, a key enzyme for De novo fatty

acid synthesis, it catalysis the Acetyl-coA and Malonyl-coA to produce Palmitate

[10] but in case of normal metabolism its expression level is very low beacuse only

glycolysis is enough for compensating the energy demand. Alternatively, at em-

bryonic stage and in tumor cells FASN was found to be highly overexpressed in de

novo Lipogenesis pathway for energy hemostasis in cancerous cells.Its differential

expression for tumor cell survival and proliferation make it a best oncology drug

target.

Metabolic pathways specifically De novo lipogenesis which is key regulators in

many cancers mostly in breast cancer, are targeted by retrieving and updating

through literature and a comprehensive pathway was developed based on metabolic

pathways and signaling pathways, verification is given in table 4.1 and 4.2. Then

with the help of Protparam tool, all physiochemical and ADME properties of all

metabolites were estimated. LD50 value and toxicity were calculated by using Pro-

tox server tool and parameters for all metabolites were calculted by using these

properties and parameter estimation equation of half life. As in normal metabolic

pathways of cells, FASN express itself rarly because glycolysis was enough for com-

pensating their energy demand. But in case of cancer, FASN shows its overexpres-

sion for compansating the energy demand of abnormally growing cells. So model

of overexpression of FASN was developed using toolbox in Simbiology MATLAB

for the simulation of over expression of FASN.

For designing a best drug with minimum toxicity the drugs already available at

drugbank approved by FDA are used. After calculating all the physiochemical

and ADME properties of drugs their five different combinations i.e. drug cocktails

are made using Chemdraw tool. The properties of all drug cocktails calculated

using different tools i.e. swissadme, ACD/I-lab reports and protox server for

calculating toxicity and LD50 values of cocktails. Depending upon the fitness
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value i.e. toxicity of cocktail, the best cocktail 2 choose as a drug and integrated

into pathway showing up regulation of FAS gene. After the integration of dose with

pathway, the expression of FAS shows down regulation in controlled simulation.



Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vi

Abstract vii

List of Figures xi

List of Tables xiii

Abbreviations xiv

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7

2.1 Metabolic Shifts Linked to Cancer . . . . . . . . . . . . . . . . . . . 7

2.2 Tumor Metabolism as a Therapeutic Target . . . . . . . . . . . . . 10

2.3 Human Metabolism Modeling . . . . . . . . . . . . . . . . . . . . . 11

2.4 Modeling of Environmental and Genetic
Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Background of Disease . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Metabolic Pathways Involved in Breast Cancer . . . . . . . . . . . . 20

2.6.1 Glucose Metabolism in Breast Cancer . . . . . . . . . . . . . 21

2.7 Lipogenesis and Breast Cancer . . . . . . . . . . . . . . . . . . . . . 25

2.8 Drugs for FASN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Methodology 34

3.1 Pathway Retrieval and Updated through Literature . . . . . . . . . 35

3.1.1 Glycolysis Pathways . . . . . . . . . . . . . . . . . . . . . . 35

ix



x

3.1.2 Lipogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.3 Signaling Pathway . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Parameters Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Simulation of Pathway . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Drug Cocktail and Parameter Estimation of Drugs . . . . . . . . . . 40

4 Results and Discussion 43

4.1 Pathway Retrieval and Updated through Literature . . . . . . . . . 43

4.2 A Comprehensive pathway . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Parameters Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Simulation of Pathway . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Identification of Key Nodes for Therapeutic Purpose . . . . . . . . 49

4.5.1 Interactors of Network . . . . . . . . . . . . . . . . . . . . . 50

4.5.2 Interactions of Network . . . . . . . . . . . . . . . . . . . . . 51

4.6 Drugs for Key Nodes of Lipogenesis Pathway . . . . . . . . . . . . . 52

4.6.1 Drug Parameters . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6.2 Drug Cocktails . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.3 Cocktails Design . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 Simulation of Pathway with Dose . . . . . . . . . . . . . . . . . . . 62

4.7.1 Model Development . . . . . . . . . . . . . . . . . . . . . . . 62

4.7.2 Dose with 100mg Drug . . . . . . . . . . . . . . . . . . . . . 63

4.7.3 Dose with 170mg Drug . . . . . . . . . . . . . . . . . . . . . 64

4.8 Differential Equations of Lipogensis Pathways . . . . . . . . . . . . 66

5 Conclusion 68

Bibliography 70



List of Figures

2.1 Central Metabolic Pathways and their association with key metabolic
enzymes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Genome-scale metabolic modeling as a platform for predicting flux
distribution and simulating cellular perturbation (Keren et al., 2015). 14

2.3 Metabolic processes, enzymes, and metabolites studied through genome-
scale metabolic modeling (Keren et al., 2015). . . . . . . . . . . . . 17

2.4 Glycolysis in Cancer Cells (Annibaldi and Widmann, 2010). . . . . 23

2.5 Metabolism Connection of Glucose and Lipid in normal cells (Be-
loribi et al., 2016; Cheng et al., 2014; Furuta et al., 2010). . . . . . 24

2.6 Fatty Acids synthesis appears to be independent of hormonal reg-
ulation in cancer (Beloribi et al., 2016; Cheng et al., 2014; Furuta
et al., 2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Lipogenisis pathway (Santos & Schulze, 2012). . . . . . . . . . . . . 25

2.8 A model for regulation of Acetyl-CoA with lipogenic genes (Ozkaya
et al., 2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Flow of the research methodology. . . . . . . . . . . . . . . . . . . . 34

3.2 Metabolism of Carbohydrates. . . . . . . . . . . . . . . . . . . . . . 36

3.3 Lipogenisis Pathway. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Signalling Pathway (DeBerardinis & Chandel, 2016; Cheng et al.,
2014; Zhang, 2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Strategy for drug cocktail designing. . . . . . . . . . . . . . . . . . 42

4.1 Combine form of metabolic pathways and Signaling Pathway (https://www.pathvisio.org.) 44

4.2 Simulation of lipogensis pathway. . . . . . . . . . . . . . . . . . . . 48

4.3 Hub nodes in lipogensis pathway using FunCoup (http://funcoup.sbc.su.se/search/) 49

4.4 Representing the interactors of lipogensis pathway (www.funcoup.sbc.) 50

4.5 Representing the interactions between genes of lipogensis pathway
(www.funcoup.sbc.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Aromatic benzene (a) . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Benzene with fig (a) . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8 Aromatic benzene with fig (b) . . . . . . . . . . . . . . . . . . . . . 60

4.9 Hydroxy methyl group (c) . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 fig (b) with (c), (e) . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.11 fig (e) wih hydroxyl group, (f) . . . . . . . . . . . . . . . . . . . . . 61

4.12 fig (f) with (c), (g) . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xi



xii

4.13 Model development of metabolic pathway. . . . . . . . . . . . . . . 62

4.14 Simulations for 100 mg dose of cocktail 2. . . . . . . . . . . . . . . 63

4.15 simulations of FASN for repeated dose. . . . . . . . . . . . . . . . . 64



List of Tables

2.1 Rearrangement of Human models and their utilization in metabolism
of cancer (Keren et al., 2015) . . . . . . . . . . . . . . . . . . . . . 12

2.2 Herbs with promoting blood circulation for removing blood stasis
functions with strong FASN inhibitory effect (Cheng et al., 2014). . 32

4.1 Verification of glycolysis pathway through literature. . . . . . . . . 45

4.2 Verification of lipogensis pathway through literature. . . . . . . . . 46

4.3 Estimated parameters of Metabolites of pathway (https://web.expasy.org/protparam/) 47

4.4 Drugs against FASN (www.drugbank.ca) . . . . . . . . . . . . . . . 52

4.5 Drugs against SLC25A1 (www.drugbank.ca). . . . . . . . . . . . . . 52

4.6 Drugs against FASN and its Physiochemical and ADME properties
(www.drugbank.ca)(www.swissadme)(https://omictools.com/protox-
tool) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Drugs against SLC25A1 and its Physiochemical and ADME proper-
ties (www.drugbank.ca)(www.swissadme)(https://omictools.com/protox-
tool) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Structure of Drug Cocktails designed by using Chemdraw . . . . . . 57

4.9 The physiochemical and ADME properties of the cocktails (www.drugbank.ca)(www.swissadme)(https://omictools.com/protox-
tool) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.10 The probabilities of health effects of the cocktails on the organism
(https://ilab.acdlabs.com/iLab2/) . . . . . . . . . . . . . . . . . . . 59

4.11 Toxicity of Cocktails (https://omictools.com/protox-tool) . . . . . . 60

xiii



Abbreviations

ACLY ATP Citrate Lyase

ACC Acetyl-coA Carboxylase

ACL Acetyl-coA lyase

FASN Fatty Acids Synthase

SCD Stearoyl-Coa desaturase

NADPH Nicotinamide Adenine Dinucleotide phospahte

SDA Stearidonic Acid

TCA Tricarboxylic Acid

mTOR Mammalian Target of Rapamycin

AMPK Adenosine activated-monophosphate Protein Kinase

G6P Glucose 6 Phosphate

6PGSL 6 Phosphoglucono-siga-lactone

6PGDH 6 Phosphogluconate Dehydrogenase

IGF Insulin Growth Factor

HIF Hypoxia inducible Factor

FA Folic acid

KG Kitoglutrate

ADME Adsorption Distribution Metabolism Elimination

GLS Glutaminase lyase synthase

xiv



Chapter 1

Introduction

In the modern world, science has made extraordinary developments for the wel-

fare of human yet at the same time there are many issues which are still challenge

for the researchers. The advanced approaches, for example, Stem cell and Gene

treatment and many others have demonstrated tremendous advantages in enhanc-

ing our medicinal services frameworks and revolutionized the strategies for disease

treatment [13]. With the appearance of Bioinformatics, human are able for de-

positing the exponentially developing DNA, RNA, Protein successive data from

Human Genome Project and different sources in curated databases. It addition-

ally provided us with system and tools for analysis and interpretation of enormous

biological data for their functional tasks which might be later utilized as a part

of biomedical and clinical research [14]. Regardless of accessibility of such high

throughput innovations, analysts stayed unsuccessful in finding the changeless cure

of certain deadly diseases.

The issues made by Genome Project at the time of its completion that they would

change the execution of disease therapy remained subjected to specific questions.

The purpose of these questions may be the development of complex disease whose

cure is challenging for biomedical scientists. Complex infections are not caused

because of a single gene transformation (as if there should be an occurrence of

simple disease) rather than they are controlled by polygenic (Multiple qualities)

factors alongside some environmental elements, the way of life are also heritable in

1
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nature [22-23]. In such diseases, hereditary elements contribute mostly to disease

hazard and they don’t show heredity pattern. This environmental gene expression

encourages in conferring better knowledge of infection causal and later aides being

developed for targeted treatment [56]. The most critical case of complex infection

is cancer which is characterized as the uncontrolled/unusual expansion of cells

because of mutation in certain gene under the control of environmental or heredity

factor. Cancer is intricate as in it includes a progression of connection of hereditary

and environmental factors that straightforwardly deregulate different components

of the human body, for example, Immune system, DNA Repair strategies and

apoptosis and so on [33]. These systems comprise of different signaling pathways

so they in collaboration with epigenetic forms decide the phenotype of the tumor

[32].

Latest cancer genome studies have prompted the recognition of various pathways

related to the tumor [169,156]. Due to extensive mutations in these particular

genes incidence of cancer and development had been examined, consolidated com-

bined for facilitating cancer phenotypes. Moreover, advances “NGS” has empow-

ered the selection of various malignancy sorts and its further types, revealing both

intra and inter tumor heterogeneousness [170]. In spite of the huge variety of ab-

normal cell progression, neoplastic events are combining to change cell metabolism

in abnormal cells. No doubt, study of cancer cells have revealed a metabolism that

is not the same in abnormal cells as compare to the metabolism of normal cells

because of extra demand of energy, fatty acids, and proteins and all fundamental

needed for development [72]. This crucial ability of cells of the tumor has prompted

improvement of the many major treatments with methotrexate and chemotherapy,

as of now in the middle of 1950 [53], trying to aim abnormal growth in cancer.

These medicines which meddle with the utilization of FA (folic acid) in cells of

tumor have used against metabolites for blocking DNA inhibiting the formation

of DNA and development of the tumor. Late prompted the acknowledgment of

modified metabolism in tumor as a cause of cancer has become confirmed factor

[47]



Introduction 3

Metabolism of the cell has excellently regulated with coordinating signs received

by factors of intra and extra-cellular environment of the cell. The switch of

metabolism pathway advancing uncontrolled development has regularly activated

with the help of transformations in signaling pathways which stay at the essence

of balancing of energy and anabolism, for example, Hypoxia-inducible factor 1a,

mTOR, AMPK and PI3K [82,126,174,63]. Pathway with mutation leads to con-

stitutively active developmental signals that cause cells to multiply wildly. Along

with the intracellular hereditary modifications, the strange environmental condi-

tions also assume an important part in changing cell metabolism, pH levels, het-

erogeneity in oxygenation and nutritional accessibility have combined with char-

acteristically alter cancer cells development, improving with persistent access of

growth components and ability of redox that enable tumor survival and multiply

in unfavorable particular pressure [37].

Lately, research has an essentially improved concept of the hereditary and molec-

ular events fundamental of the metabolic useful phenotype of cancer cells. The

growth of gene sequences and gene methylation pattern, protein, genes and mi-

croRNA expression estimations, and also metabolites consideration, have uncov-

ered a far-reaching and picture of abnormal cellular processes [113]. In any case,

the whole metabolic system is involved, with a couple of thousands of biochemical

changes. To understand broadly how the different cell segments connect with each

other and to additionally figure how the metabolic system reacts to various hered-

itary and environmental disturbances, computational approaches are employed.

Specifically, computer models empowering the examination of the condition of

networks at various stages and at the genomic level have become useful for both

non-cancerous and cancer cell metabolism, and also to improve the capacity of

distinguishing effective medication, biomarkers and drug targets [119].

With the advancement of comprehension of cancer genes, focused on drugs pointed

particularly at genes whose secretions are engaged in cancer pathogenesis to have

reformed the idea of cancer treatment [117]. This technique has created amazing

single-molecule therapy for single-molecule directed treatment, demonstrating ei-

ther transient advantages or no advantage at all. This requires pathway directed
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therapy that uses numerous molecules. Cancer proliferation is a multistage proce-

dure including several overexpressed or dysregulated genes that underlie the cell

signaling systems [113]. Mostly cell signaling systems are dynamic and nonlinear.

It is not obvious how drug cocktail to be formed with a specific end goal accom-

plishes maximal efficacy. It is harder to acquire a low dose drug with insignificant

adverse effects and medication protection, which requires the constituents of the

medication are balanced in order to acquire extreme synergistic impact [97]. The

solution for such issues requires complex computational demonstration and in-

vestigation. The computational model would then be able to be modulated in

distinct approaches to test distinctive drug strategies. These strategies provide

experiences that how a drug target ought to be wired into the control compo-

nent of the system. This approach, network modeling mathematical analysis drug

discovery, may turn into the treatment [88]. Molecularly focused on therapeu-

tics give possibly more reliable expressions while significantly diminishing toxins

as compared to chemotherapy. For cancer signaling networks which are typically

intricate, different molecules should be focused so as to remain tuned in to the

control components of the network and to accomplish the greatest synergistic im-

pacts. Mathematical modeling and computer based simulations are essential in

imitating the progression of the network, some of which may respond to normal

or cancer phenotypes [121]. Most critically, the impacts of numerous molecules

can be signaled by perturbing numerous parameters in the model. As compare

to the modeling of microorganisms two critical focuses are considered while us-

ing these human reconstructions (i) Models are not specific for a type of cell and

tissue. They include all potentially happening reactions in metabolic pathway of

human, their solution consists of various possible practices which have addition-

ally controlled to accomplish stage of tissues and sensitivity of cells with respect

to metabolism (ii) the role of various cells of human and tissues has harder to

decide or maybe not possible, particularly in non-proliferating part of tumor (and

henceforth maximal biomass yield can’t be accepted) [122].
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1.1 Problem Statement

Computational Modeling and Analysis of FASN in lipogenesis and to design a

pathway directed therapy with maximal efficacy and minimal toxicity .

1.2 Proposed Solution

Elucidation of quantitative insight of the pathway most critically involved in tumor

formation and progression and consensus of the altered cell behavior for determin-

ing the site at which oncologist should intervene is of prime importance from

therapeutic point of view and analyzing the role of FASN and other important

protein of lipogenesis pathway in Breast Cancer through Mathematical Modeling

and simulation in MATLAB.

1.3 Objectives

The objective of this research is:

1. Computational modeling and analysis of FASN in the lipogenesis pathway.

2. To Model a pathway directed therapy with maximal efficacy, minimal resis-

tance and reduced toxicity.

1.4 Scope

A perfect molecular target should especially show its expression or activation in

cancerous malignant cells. There are two distinctive qualities of FASN that has

made it appropriate for being an antitumor target on its tissue circulation and its

enzymatic functioning. FASN exhibit high expression in breast tumor however not

in non-lactating typical breast tissue utilizing FASN as an objective will impact
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the multiplying part of the breast while the non-proliferating compartment will

stay unaffected. FASN particular restraint, C75, and EGCG are notable cases

of inhibitors. Though, their remedial efficacies are restricted due to either their

high harmful level or temperamental nature. Thus, looking for a more steady and

intense therapy that is an objective inhibitor will be an imperative future pattern

for innovative work for oncologists.



Chapter 2

Literature Review

2.1 Metabolic Shifts Linked to Cancer

Yizhak [32] initially give a concise diagram of the metabolic adjustments to happen

in malignancy (cancer) [37,28,73]. Prominent climaxes of tumor breakdown were

found by Otto Warburg, demonstrating that growth cells use glucose amount and

discharge it as lactate with the availability of oxygen, a mechanism introduced at

high-impact known as “glycolysis” or the “Warburg effect” [12]. In comparison to

the ordinary cells utilizing glucose of mitochondria by means of the tricarboxylic

acid in TCA cycle, this sensational increment in glucose utilize by tumor (cancer-

ous cells) has manipulated at clinics stage to imagine disease by (18F)- 2-deoxy-D

glucose positron outflow tomography (FDG-PET) [172]. From late revelations,

glycolysis process in diseased cells has been contemplated broadly and a few gly-

colytic responses were observed to be key controllers of tumor breakdown (as shown

in fig.1). Past the Warburg impact, real changes in disease have been recognized

pathways engaged with the generation of key biomass fragments. The uncon-

trolled multiplication in the cell of cancer and proved by anti-metabolite based

chemotherapy, synthesis of undeveloped delay in the amalgamation of nucleotides,

and NADPH by the oxidative “pentose phosphate pathway” (PPP), expanding

with glucose break down), have basis for efficiently increasing cells. The step of

7
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glycolysis, another pathway is the synthesis of serine that has become vital for

amino acids, lipids, and blends of nucleotides. The high regulation of pathway is

interconnected to the capacity of best growth tumor to metastasize [65]. More-

over, genome studies have revealed that serine production is the substantial cause

for the propagation of many cancer cells. The genes for the phosphoglycerate

dehydrogenase (PHGDH) which is the enzyme that catalyzes the production of

serine, exceptionally communicated in a few tumors, and melanoma and breast

disease cells with PHGDH enhancement occupies huge glucose related carbons

into glycine and biosynthesis of serine [161,167]. Numerous tumor cells experi-

encing oxygen-consuming glycolysis require carbons of glutamine to recharge the

TCA cycle and support speed up anabolism. For cells, Glutamine is also a crit-

ical nitrogen hotspot (80). Two glutaminases GLS1 or GLS2 can deaminate the

glutamine by one of the creating glutamate and alkali. In a few situations such

as deficiency of oxygen (hypoxia), glutamate produced from a-KG can experience

reduced carboxylation to produce oxaloacetate, acetyl-Co, citrate, and to help an-

abolism without oxygen [164]. Glutaminase had shown overexpression in various

cancers, and its hindrance defers cancer development [159,174]. The metabolism

of cancer has non-restricted to the adjustment of metabolic to ecological changes

or increase expansion levels. Transformations influencing important pathways of

metabolism have been revealed in genetic types of disease or appeared to expand

tumor inclination, uncovering that different digestion could likewise be, now and

again, the reason for growth. Not long after this original interpretation, fumarate

hydratase (FH), the catalyzes the proselyte’s fumarate to cancer, have discovered

transformed in inherited leiomyomatosis and growth of Kidney cells “HLRCC”

[160,79]. Transformations in the Tricarboxylic Acid cycle, its compounds force

cells to depend on mutated products of TCA cycle and to amass the high amount

of fumarate and succinate. This has believed that subsequent adjustment of subor-

dinates of oxygen easily altered type of the HIF, with the availability of Oxygen,

offers a vigorous expression of glycolysis and increase to pseudo hypoxic. An-

other important compound of TCA cycle is isocitrate dehydrogenase (IDH) that

observed to be altered in disease cells.
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Figure 2.1: Central Metabolic Pathways and their association with key
metabolic enzymes.

Heterozygous transformations in the dynamic site of IDH1 and IDH2 isoforms were

examined in the high degree of low-quality glioma and intense myeloid leukemia

(AML) patients [194,61,168]. Mutation in IDH has not only reduced the capacity

to change isocitrate to a-ketoglutarate but it also reduces the production of 2

hydroxyglutarates (2HG) by utilizing a-ketoglutarate (143) and that is the numeric

condition in AML and glioma. Particularly artificially synthesized inhibitors for

the mutation in IDH1 and IDH2 have at trials in clinics [152]. By bringing together

all facts, 2HG, fumarate, and succinate have been named as ’onco-metabolites’

offering that there exist some distinctive oncometabolites and suspect disclosure

the probability that diverse oncometabolites exist and foresee divulgence.
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2.2 Tumor Metabolism as a Therapeutic Target

As the discovery of new targets is one of the fundamental objectives of metabolic

displaying in disease, the considerable number of deregulated metabolic pathways

gives the chance to focus therapeutically on these pathways. A noteworthy test has

that most by far of pathways of metabolism utilized by disease cells are likewise

basic for the persistence of ordinary cells, indicated by the unfortunate reactions

of a few chemical therapy specialists. In any case, the nearness of tumor-particular

chemical subtypes or alternation in the action of a pathway may permit special

focusing of growth cells. The helpful impacts of focusing on a few metabolic

proteins have been explored. For example, glycolytic inhibitors, for example,

GLUT1inhibitor and 2-deoxyglucose experienced trials in clinics [146,10,45]. And

the impact of them, however, have observed to be constrained, possibly because

of the solid increment in glutaminolysis showed by a few cancers, and the capacity

of cancer cells to deliver ATP by oxidative phosphorylation with useful mitochon-

dria. A few inhibitors of amino corrosive digestion have likewise been examined.

Glutamine, the primary focused amino acids that can be extracted from the tumor

patient’s blood. Phenylacetate lessens glutamine accessibility in this way hinder-

ing disease cell multiplication and advancing separation [166,174]. Glutamine’s

exclusion straightforwardly from blood may likewise expand the level of the body

drains its specific particular storage of muscle (cachexia), other technique to target

GLS specifically [191].

This has prompted the utilization of asparaginase and for the treatment of infancy

acute lymphoblastic leukemia, the enzyme that changes asparagine to aspartate

and ammonia [157,183].Going besides amino acids metabolism, a few blocking

agents of fatty acid formation have examined and produced. TCA cycle derived

citrate and NADPH synthesized endogenous fatty acid, which can be delivered

by different catalysts and PPP. In the cytosol, ACL converted the citrate into

oxaloacetate and acetyl-CoA [62]. Production of fatty acid initiate with enzymes

ACC produced the malonyl-CoA by changing over acetyl-CoA and has been trailed

by the progression of steps by which malonyl-CoA and acetyl-CoA are changed
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into palmitate by FASN. Numerous tumors in this manner express the excess of

fatty acid synthase, for example, colorectal, breast and endometrial cancers (34),

and inhibiting factors of FASN may destroyed cancer cells specifically and make

them sensitive for different treatments, for example, Herceptin [201,86,73].

Going other than amino acids metabolism, a couple of fatty acids inhibitors ar-

rangement has been created and contemplated. NADPH and TCA cycle derived

citrate generate Endogenous fatty acids, which can then be conveyed by the di-

verse catalysts and PPP. Citrate is changed to acetyl-CoA and oxaloacetate by

ACL when it is present in the cytosol. The formation of Fatty acids starts when

ACC is changing acetyl-CoA to malonyl-CoA and this was followed by the move-

ment of ventures where acetyl-CoA and malonyl-CoA are changed by fatty acid

synthase (FASN) to make palmitate.FASN is overexpressed in various cancers by

this way i.e colorectal, endometrial and breast cancer [34], and FASN inhibitors

are either destroyed cancer cells particularly to various medications, for instance,

trastuzumab and 5-fluorouracil (Herceptin) [83,196,201].

Different inhibiting enzymes of de-novo lipogenesis, for example, monoglyceride

lipase (MGLL), ACL, ACC, choline kinase and 3-hydroxy-3-methylglutaryl-CoA

reductase (HMGCR), have demonstrated successful for therapy of cancer at pre-

clinical practices and the enzymes have the concentration of improvement in drug,

in fact few of them, such as statins, are undergoing subordinate in clinical trials

recently [83-84,88,62,90].

2.3 Human Metabolism Modeling

At human metabolism, Genome-scale metabolic modeling of (GSMM) has been

remade to speak to gathering for metabolic responses known to happen in cells of

human [163,187,40,57-58].
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The given models are used to display both healthy and unhealthy metabolism

of human, which is extensively surveyed by Mardinoglu and Nielsen 2015, Bord-

bar and Palsson 2013 [35,59]. Considering these difficulties question is then how

Yizhak [32] might use these recreations to study about normal and infected human

metabolism.

Table 2.1: Rearrangement of Human models and their utilization in
metabolism of cancer (Keren et al., 2015)

Cancer Type Application References

Genetic Studying the association between cell pro-

liferation and the Warburg effect

[178]

Generic Pathway contribution to NADPH produc-

tion in cancer

[177]

Generic Identification of cancer selective targets [178]

Generic Predicting combinations of anti-cancer

drugs with minimal side effects

[42]

26 tumor tissues Identifying cancer-specific metabolic

Pathways

[7][10]

Liver Cancer Cell Line Identifying P53-associated metabolic

Changes

[47]

The NCI-60 cell line

collection

Studying the association between cell pro-

liferation and nutrients uptake rates

[40]

Breast Cancer Studying the metabolic differences associ-

ated with tumor stage and type

[49][50]

Clear Cell renal cell

carcinoma

Identifying synthetic lethal interaction in

FH-deficient cells

[44]

The NCI-60 cell line

collection

Predicting drug-reaction interactions [54]

The NCI-60 cell line

collection and breast-

/lungs cancer clinical

samples

Personalized prediction of metabolic phe-

notypes and identification of selective

drug targets

[77]
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The NCI-60 cell line

collection

Association of the Warburg effect with

cell migration and identification of anti-

migratory drug targets

[78]

Hepatocellular carci-

noma

miRNA was simulated to predict their

ability to reduce cancer cell growth

[185]

Colon and breast can-

cer cell lines

Metabolomic network correlations [53]

Nine cancer types

(TCGA/CCLE)

Identification of oncometabolites [55]

16 cancer tissues Identifying cancer-specific metabolic fea-

tures

[58]

Breast, bladder, liver,

lung and renal cancer

Topological analysis of ccRCC-specific

metabolic processes

[45]

Hepatocellular carci-

noma

Personalized model reconstruction and se-

lective drug target identification

[34]

15 cancer cell types Studying the topological features of anti-

cancer metabolic drugs

[186]

2.4 Modeling of Environmental and Genetic

Stresses

At the intracellular metabolite level, there is another kind of perturbations, in

which a deficiency in metabolite is stimulated by the reduction of the system

[112]. Stage of metabolism of cells can be reassessed by distinctive mixes.

Notwithstanding, alternative target functionality have been connected in a way

that cell tends to deviate from their past abnormal kind condition [165,177]. In-

quisitively, it has been exhibited that during the guideline approach shows the

after effect of excess genetic stress, the other one is more susceptible for those
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cases that don’t have any framework for alternative regulation for the optimal

development arrangement [164-165].

 

Figure 2.2: Genome-scale metabolic modeling as a platform for predicting
flux distribution and simulating cellular perturbation (Keren et al., 2015).

Regardless of any condition-specific high throughput data, they have been contin-

uously ustilized for many drug disclosure applications [167,184,178], and further-

more building of products of metabolism [136-137], simulation of reductive de-

velopment [76,192,193] essential expectations of genes [41,190,187]and some more

[193].

Regardless, the period of vast scale omics information gives a chance to decide

the disturbed stage with no need to accept an early characterized target purpose.

Scientists have designed another algorithm that uses source and gene expression

of target provide information to predict perturbations that are well on the way to

change the metabolic state from one to another. This solution has become useful
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for examining living things maturing and prompted the distinguishing proof of

vital life expectancy expanding part of DNA.

Latter, [33] have explored antimetabolites expecting to on numerous enzymes

at the same time. Implement that technique for customized 6 models of pa-

tients suffering from hepatocellular carcinoma has anticipated it active opposite

to metabolites. Other than these l-carnitine analogs had examined experimen-

tally by checking the effect of its inhibiting agent carnitine palmitoyltransferase

as the multiplication of a cell line “HepG2”, demonstrating the diminished ability

of tumor.

Models that are based on the cell of a couple of many usually multiplying and

malignant division of cells have been worked by the quantitative incorporation of

their gene activity range. These specific models of the cell were then appeared

to effectively predict metabolic expression at a personal level, including the level

of cell development, reactions of drug and its biomarkers. These models have

been additionally utilized for distinguishing specific targets of the drug, in which

it has prompted the laboratory approval of a best expected particular target, in

cancers of white blood cells and cancerous kidney cell division versus their ordinary

amount.

These models of cancer have been used to anticipate the proportion amongst gly-

colytic and oxidative ATP generation rate, demonstrating its positive relationship

with the migration of cell. Following, twelve of novel genes issues that were ex-

plored to diminish the percentage were discovered practically to the importantly

decreasing migration of cell, while having no impact on the development of the

cell, by discovery. Imperatively, these issues may decrease cell toxin concerning

clonal choice of cancer cells and the probability of development protection.

The different medication targets already exposed by genome-scale modeling based

investigations and more approved experimentally affirm of capacity to catch system

scale range impacts of these couldn’t have been distinguished by data examination

alone.
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As numerous studies have focused on forming cancerous cells in vitro apart of their

tumorigenic environment, presently it is being accepted largely that the tumor

microenvironment plays an important role in reconstructing and characterizing

metabolism of cancer cell [60]. The in-silico study between the relationship of a

cell and tissue by the help of GSMMs have shown both human tissue and mi-

croorganisms, but it has not yet been studied in context with the cancer cell and

supporting cells in their surrounding system [54,76]. Showing a versatile transfer

of materials in-between different cells can take us to a more closure and exact

demonstration of tumors in-vivo and exposure of more closely related phenotype

metabolically couldn’t have been found without the demonstration of every single

cancer cell alone. Tumor cell is also exposed to changing the pH and oxygen levels

while connecting with another cell in their microenvironment [7].

Previous studies have focused on forming in vitro cancerous cells apart of their can-

cerous environment, presently it is being accepted largely that the tumor microen-

vironment plays an important role in reconstructing and characterizing metabolism

of the cancerous cell [154,179,175]. The in-silico study between the relationship

of a cell and tissue by the help of GSMMs have shown both human tissue and

microorganisms, but it has not yet been studied in context with the cancer cell

and supporting cells in their surrounding system. Showing a versatile transfer

of materials in-between different cells can take us to a more closure and exact

demonstration of tumors in-vivo and exposure of more closely related phenotype

metabolically couldn’t have been found without the demonstration of every single

cancer cell alone. Tumor cell is also exposed to changing pH and oxygen levels

while connecting with another cell in their microenvironment.

All these elements play an important role in the proliferation of tumor and are

also known to influence metabolism in tumor cells [158]. By means of GSMMs,

the oxygen and nutritional accessibility can directly be stimulated. Environmen-

tal factors like pH for modeling are less straightforward. One methodology that is

possible for solving these issues is by applying investigation methods on the struc-

tural basis to forecast the influence that has been started by the level of pH over

the functioning of metabolic enzymes. Interestingly, a concept that resembles the
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Figure 2.3: Metabolic processes, enzymes, and metabolites studied through
genome-scale metabolic modeling (Keren et al., 2015).

examination has been used to study the reaction of Escherichia coli to different

temperatures that expose the protein functioning which controls the network work

at higher temperatures and hence gives a mechanistic analysis of mutations that

have been found in strains which are adapted to the hotter environment [10].

Resistance to chemotherapy treatments is a noteworthy issue faced by the re-

cent cancer biologists, and systems for its achievement have different ways [26].

Genome-scale modeling is used in this context to distinguish the unrestrained

function of existing digestion protein, thus exposing elective pathways enable for

bypassing reactions of oncogenes. To distinguish gain from work in the mutation

of enzymes and improve our concept of enzymes’ catalytic side functioning this

approach can be used [27-28]. The unrestrained function of metabolic enzymes

has already been considered by genome-scale modeling of Escherichia coli, both
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exploring the basic characteristic of these enzymes and recognizing vital metabolic

networks that develop precursors for cell development under different environmen-

tal conditions. The GSMM framework also facilitates the simulation of various

perturbations at the same time and encourage by examination of combinations

of the drug for treatment and SL based therapies. Their results give a chance

to accomplishing more noteworthy efficacy offering huge potential for enhanced

prognosis [29]. Shortly, one can take note of that besides to GSMMs, other ear-

lier methodologies used in the modeling and simulation of biological procedures,

which include expensive binary networks, the greater and small-scale examinations

through standard ordinary differential conditions (ODE) [30,71].

Yizhak concentrates how genes guide their function in different biological condi-

tions, implemented to distinguish targets of drugs at various levels, including brain,

breast and cervical carcinoma [32]. In other way, Boolean network investigations

include the demonstration transcriptional regulatory and signaling pathway and

networks and were utilized for distinguishing genes driving the mutation b/w var-

ious tumor development events [61,97], and deciding controlling mutations that

enhance cancer phenotypic changes as an expression of the surrounding of cell.

Differential networks were basically utilized as a part of the list of concentrate

changing aspects of cancer disease development and understanding disease reac-

tion to treatment[173,188].

2.5 Background of Disease

Breast Cancer is the most predominant type of cancer and the second driving rea-

son for mortality in women around the world [1]. As per the World Cancer Report

[2], breast cancer includes 22.9% of all growths in women with an expected 1.4 mil-

lion new cases every year, bringing about more than 458,000 passings in 2008 [2,3].

It was assessed that more than 1.6 million new instances of breast cancer malig-

nancies developed worldwide in 2010. In other Asian countries and Malaysia, the

prevalence of breast cancer is on the expansion, indicates changes that are known
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hazard for the breast growth. This term alludes to numerous natural impacts, that

are familial risk factors for breast cancer malignancy to incorporate; weight and

intake of dairy products as a food in significant amount, no and less breastfeeding

[11]. The Warburg impact portrays the marvel by which diseased cells depend on

vigorous glycolysis for vitality as opposed to oxidative phosphorylation [12]. The

Reverse Warburg impact depends on the perception that the non-malignant tis-

sue, to incorporate fibroblasts stromal, encompassing malignancy cells additionally

utilizes oxygen-consuming for energy through glycolysis.

Already proposed that fibroblasts have attempt vigorous glycolysis “invigorate”

by epithelial tumor cells the and along these lines discharge the items pyruvate and

lactase. And these metabolic products would effectively “sustain” the malignancy

bringing about expanded expansion. One examination revealed that stromal tissue

in breast cancer had the Reverse Warburg impact, for example, irritation and

markers of oxygen-consuming glycolysis [14].

Despite the fact that Breast cancer is viewed as a hereditary ailment in which a few

transformations and genome dynamic changes are available [15] late research are

adapted to attempt and comprehend different systems adding to the (arrangement)

advancement and movement of the disease [18].

Various features are related to breast cancer are age, hereditary qualities, and

distinctive ecological elements. Most breast cancers basically influence ladies ma-

tured 50 and more seasoned, there is a reasonable connection amongst menopause

and breast cancer rate [3-5]. Other metabolic procedures add to the arrangement

of an ideal microenvironment for the treatment of breast cancer, In the most re-

cent century, to be specific, mastectomy, chemotherapy, and radiotherapy, or a

combined therapy [3]. With the quick advancement of sub-atomic meds, novel re-

medial methodologies, for example, hormonal treatment and sub-atomic focused

on treatment, have been proposed to enhance clinical result; be that as it may,

the result of such methodologies is as yet not perfect [3,4].

The diverse atomic different types of cancer in breast emulate the statement of

particular gene expression In breast cancer its luminal subtypes have tried to
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show hormonal receptors and abilities of luminal epithelial cells, for example, ar-

ticulation with less atomic weight cytokeratins; the overexpress HER2 shown by

ERBB2+ breast cancer and the ‘typical breast disease’ sort have revealed the ex-

pression of genes related to non epithelial cells and fat cells, for example, integrin

α and lipoprotein lipase [9].

2.6 Metabolic Pathways Involved in Breast Can-

cer

Metabolism is a procedure whereby biochemical, oxygen, and supplements are

employed to create energy as ATP expected to perform cell works or used for

macromolecular synthesis. As of late, metabolic exercises have reemerged as a

procedure ready to produce other various cell reactions [5].

In breast tumors metabolism, similar to most cancer, intensely depends on the uti-

lization of oxygen-consuming glycolysis and glutamine catabolism to help cancer

development. Both pathways are imminent and focuses on breast tumor treat-

ment [15]. Vigorous glycolysis sidesteps mitochondrial oxidative phosphorylation

to keep away from a lopsided and negative overproduction of ATP and NADH.

Like glucose, glutamine is taken up by tumor cells and has an essential part in the

recharging of the mitochondrial citrus extract carbon pool. To expand the pro-

liferative movement tumor cell ordinarily needs to adjust its metabolic pathways

offering to ascend to a metabolic reinventing which is by and large clarified by

the metabolic move from mitochondrial oxidative phosphorylation (OXPHOS) to

oxygen-consuming glycolysis (Warburg effect) [17][18][19].

Postmenopausal women with a weight record (BMI) of more than 30 have a 31%

expanded suspectability breast cancer contrasted with postmenopausal women

with a BMI underneath 25; obese ladies who create [21]. One investigation checked

on the confirmation of the relationship amongst overweight and breast cancer and
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proposed the contribution of a few pathways. Adiposity can increment cours-

ing insulin levels and insulin-like growth factor-I (IGF-I), tumor necrosis factor-α

(TNF-α) and adipokines, for example, leptin [9].

2.6.1 Glucose Metabolism in Breast Cancer

Cells are profoundly composed and a consistent supply of energy is required to

make and keep up the organic requests that keep them alive. This energy is

obtained from the cleavage of put away in sustenance particles, which fill in as fuel

for cells [54]. In recent research have depicted basic pathways of metabolomics in

breast cancer and portrayed on metabolites that cause tumor development and

movement. Late advances propose that metabolic profiling gives new chances to

enhance results in breast cancer. Rather, oncogenic MYC and the TP53 tumor

silencer gene appear to affect metabolism in breast cancer. In breast cancer, lactate

(as a finished result) and glutamine (as a substrate) upgrade disease aggressiveness

and constitute targets focus on breast cancer treatment [30].

Energy homeostasis of an ordinary cell is adjusted by no less than three metabolic

pathways i.e. lipogenesis, glycolysis and tricarboxylic (TCA) cycle, and these path-

ways are firmly connected to amino acid and additionally nucleotide biosynthesis

[24]. Ordinary cells use an assortment of energy, for example, glycogen, unsat-

urated fats and amino acids, glucose is considered as important energy hotspot

for the development of cells. Glucose has transported by the glucose transporter

framework and through the glycolysis pathway has changed over to pyruvate [44].

After that Pyruvate changed over to acetyl-CoA and in mitochondria used as a

substrate for the TCA cycle. It has for some time been perceived that the tumor

cells need increase level of energy metabolism due to their dynamic expansion and

proliferation [64]. Due to similar issues, tumors turn out to be extra hypoxic and

subsequently they have to depend on non-oxidative energy resource, for example,

glycolysis as initially announced by an effect of Warburg. Then again, in cancer

cells, more lipogenesis is by all accounts causative both to producing energy (beta-

oxidation) and building mass (cell film and so on) [70]. The rate of lipogenesis is
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additionally essentially quickened in tumor cells with a specific end goal to make

up for the higher rate of expansion. It is progressively obvious that numerous

genes engaged in metabolic pathways assume coordinate parts in tumorigenesis

and tumor development [29].

Glycolysis is a process of catabolism that produces two pyruvates by changing

molecule of glucose with the production of ATPs and two reduced NADH par-

ticles [65]. In the oxidative phosphorylation pathway in the presence of oxygen

pyruvate experiences oxidation to produce CO2 and H2O, bringing the generation

of around 36 molecules of ATP. Formation of Lactate from glucose in the presence

of oxygen is Warburg effect [12]. Increased glycolysis is taken as to the seventh

sign of cancer [55]. Multiplication of Ordinary cell in tissues is managed by the

accessibility of development regulating factors and its interaction with cells from

outside. In initial cancer stage, an uncontrolled division of cells from blood trans-

fer cancerous cells far from veins thusly, by nutritional and supply of oxygen [58].

Cancer cells have a significantly utilization of glucose by the pathway of glycolysis

in which pyruvate does not transfer to the Krebs cycle i.e. the oxidative phospho-

rylation pathway that suitably produced lactate by changes over pyruvate: the

purported Warburg effect. The process of glycolysis happening in cells of growth

not only linked with a decrease in Krebs cycle [13]. The Reverse Warburg impact

depends on the perception that the non-transferable cancer cells i.e. benign tis-

sue, to incorporate into fibroblasts stromal, encompassing tumor likewise utilizes

oxygen for energy through glycolysis [89]. It is hypothesized that tumor cells of

epithelial ”fortify” the fibroblasts to embrace glycolysis with oxygen and conse-

quently secretes the pyruvate and lactase. These products would as metabolites

successfully ”nourish” tumor cells bringing about expanded development. One

investigation revealed cancer cells of breast tissue of stroma have highlights of

opposite impact of Warburg, for example, irritation and glycolysis markers [9].

Rapidly developing cancer cells experience the lack effects of an absence of oxygen

and nutrients because of the dispersion furthest reaches of supply in blood, and

hence, persistent metabolism of glucose and lactate production has believed as

adjustment hypoxia to the cancerous cell too. Tumor for its energy requirement
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Figure 2.4: Glycolysis in Cancer Cells (Annibaldi and Widmann, 2010).

wants to utilize the process of glycolysis even in the condition when the cells are

developed in media culture [30].

By the glycolytic pathway, the expanded glucose usage produces intermediates

of a metabolic pathway that tumor requires to manage its quick multiplication.

Glucose 6-phosphate (G6P) is one of these intermediates utilized for nucleic acid

synthesis by the pentose phosphate pathway, to permit quick replication of DNA

[48]. Creation of pyruvate inexhaustibly animates synthesis of lipid important for

the membranes arrangement in proliferating tumor cells. At last, lactate synthesis

of tumor cells initiate tumor microenvironment acidification to make a specific

niche to facilitate the development of the tumor and hindering the activity of

some anticancer medications [163].
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Figure 2.5: Metabolism Connection of Glucose and Lipid in normal cells
(Beloribi et al., 2016; Cheng et al., 2014; Furuta et al., 2010).

 

Figure 2.6: Fatty Acids synthesis appears to be independent of hormonal
regulation in cancer (Beloribi et al., 2016; Cheng et al., 2014; Furuta et al.,

2010).
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2.7 Lipogenesis and Breast Cancer

Metabolism can enormously vary from individual to individual. These distinctions

can have hereditary causes and add to disease chance. They may likewise influ-

ence the course of a disease or prompt an antagonistic medication reaction [95].

Deoxycholate, which is integrated by microbes (bacteria) in the intestines, collects

in human breast tissue and was found to advance the survival of breast cancer

cells at low micromolar concentration [92]. However, initiate apoptosis at higher

rates. Breast tumors usually build up a lipogenic phenotype and intensely depend

on glucose and glutamine utilization for tumor development. This reinvention of

cell metabolism of breast cancer is encouraged by oncogenes and tumor silencer

genes and both catalytic [3,31].

 

Figure 2.7: Lipogenisis pathway (Santos & Schulze, 2012).

Fatty acids synthesis happens in a predetermined number of tissues (i.e., in the

lactating mammary organ, fat tissue, and liver) [35,97]. High starch nutrition to-

gether with expanded insulin levels in liver and fat tissue fortify fat synthesis to

change over abundance sugars into unsaturated fats and triglycerides for energy
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storing [69,100]. The formation of palmitate from acetyl-CoA and malonyl-CoA

is catalyzed by FASN. Acetyl-CoA-carboxylase is another critical enzyme in fatty

acid formation whose work is to feed FASN with malonyl-CoA which is catalyzed

to malonyl-CoA from the ATP-subordinate carboxylation of acetyl-CoA, and in

this manner going about as the rate-limiting enzymes in the fatty acid formation

pathway [103]. SREBP1 is one of the key proteins directing the action of these cat-

alysts and of membrane phospholipid synthesis and this is empowered by insulin

which has an important part in hepatocytes [105]. Synthesis pathway in ordinary

tissues is managed by nourishment, though in cancer the pathway is dysregulated

and out of healthy control. The upregulation of ACC1and FASN is an early occa-

sion in tumor development, In scattered cells of lobules and terminal conduits in

ordinary breast tissue the expression of these catalysts (enzymes) happens and in

carcinomas the expression ends up noticeably serious and most noteworthy articu-

lation is found in high-review ductal carcinomas in situ [107,109]. In breast cancer,

SREBP1 is considered as the key controller of FASN and ACACA. SREBP1 and

FASN expression relationship found is not so strong [72], in spite of the fact that it

must be remembered that at the post-translational level the function of SREBP1

is managed. MAPK and PI3K pathways managed SREBP1 according to Yang

investigations in vitro and that SREBP1 directs transcription of FASN [81]. In

Breast tumor cells the key controller is HER2 for ACACA and FASN that are not

controlled by SREBP1, and these proteins are directed by the mTOR signaling

pathway at the translational level [72]. In this manner [145], the correct part of

SREBP1 in managing FASN and ACACA is still in confusion in case of breast

cancer. SPOT14 (S14, THRSP) is intensified in 15- 20% of breast cancer, and its

expression associated with that of ACC1 and in addition with tumor grade and

diminished disease-free survival [70-72]. The activity of SPOT14 is managed by

hormones and SREBP1 [55] and the connection between the lipogenic phenotype

(i.e., ACC1 and SPOT14 articulation) turned out to be more apparent when the

gem structure of SPOT14 was as of late uncovered [113]. Exceedingly prolifera-

tive diseased cells demonstrate a solid lipid and cholesterol demand, which they
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fulfill by either expanding the take-up of exogenous (or dietary) lipids and lipopro-

teins or over-activating their endogenous amalgamation (that is, lipogenesis and

cholesterol combination, separately [149]. Reprogramming of lipogenic pathway

is a standout amongst the most substantial alteration of tumor cell physiology

and three genes in this pathway are known to assume key parts in tumor develop-

ment, specifically ACLY, ACC, and FAS. Important genes engaged in this pathway

including ACLY, ACC and FAS are considered to assume basic parts in tumorige-

nesis and malignancy movement [30]. ACC is more efficient in its active state, in

this manner changing over acetyl CoA to malonyl-CoA to synthesize more fatty

acids by fatty acid synthase. FAS articulation is related with an increased danger

of breast cancer reoccurrence [35] and up control of FAS gives chemoprotection;

down direction of FAS causing breast tumor cell line to pretend more sensitive to

chemotherapy drugs. Insulin-like growth factor (IGF)-I have been appeared to up

direct FAS in malignant breast cancer cells and when FAS was suppressed, IGF-I

intervened cell development was hindered [9,86,94].

Target gene expression contemplates recognized up-regulated transcripts associ-

ated with the pathway of cholesterol amalgamation and lipogenesis, fundamental

for improvement [119] and development of huge forms of cancer cells. Lipogenic

catalysts, for example, acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)

and fatty acid synthase (FASN) show increased expression level that enhances

the formation of cholesterol [178], express all inclusive changes phenotypically in

many cancer. Increase level of expression of FASN expects reduced prognosis in

cancer patients. The level of expression shows up at the of precancerous stage and

continues in prostate and breast tumors [198]. The underlying perceptions, nu-

merous hopeful genes, engaged with cholesterol-related pathways (take-up, union,

and capacity) and FAO, believed as essential in supporting threat. The carni-

tine palmitoyltransferase 1i.e. FAO-constraining enzymes, isoforms C (CPT1A

and C) have overexpression in numerous cancers [154]. AMPK and p53 incited

up-regulation of CPT1C, incited by, have appeared to shield tumor apoptosis in

denied oxygen and glucose levels. Contrarily, CPT1 knockdown sharpens tumor

to radiation and causative agents of apoptosis [32].
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ACLY bonds metabolic Pathway of glucose and Fatty Acid by the conversion of

citrate into oxaloacetate and the precursor for fatty acids synthesis i.e. 2 carbon

acetyl-CoA, Reduced ACLY decreases the cells ability of metabolism of glucose

into lipid as demonstrated adenocarcinoma cells in human by siRNA [83-84]. With

variation in metabolism which harms tumor formation of murine and inhibits

cancerous cells in the xenograft tumor formation “ACLY” is silenced by shRNA

[83-84]or siRNA [89]or by using chemicals inhibited by “SB-204990” [85]. ACLY

has become a hopeful target for treatment, as it has acetyl-CoA as the vital product

for numerous molecules as a metabolite in the metabolic pathway and for the

acetylation of nucleic acids and of proteins works as a substrate [89]. Therefore,

by inhibition of production of ACLY may have significant effect on other pathways

of metabolism too.

In TCA cycle, citrate synthase produced citrate and has transferred to the cytosol

by means of citrate transporter in mitochondria [97]. Then it was converted into

cytosolic acetyl-CoA by using ACLY as an important precursor of fatty acid syn-

thesis. However in case of normal cells ACLY expression has low in amount, but

in case of different tumors, it has been expressively up-regulated [104,106,110,107-

108]. Noteworthy, active form of ACLY i.e. phosphorylated ACLY has found to

be positively interrelated with lungs cancer at clinical level [59-60]. Moreover,

inhibiting agents of ACLY such as “siRNA and SB-204990” inhibit synthesis of

acetyl-CoA which as a result stops the growth of cells in vivo and in vitro [83,98].

With the blockage of ACLY with siRNA can suppress the Akt signaling which

further causes the in vitro loss of tumorigenicity. From these results, it has been

clear that ACLY majorly involves in the production of tumor and survival of tumor

cells and suggests these compounds as a possible target for clinical usage. Hydrox-

ycitric acid HCA a known ACLY inhibitor which noticeably reduced cholesterol

levels, triglycerides and LDL without specious harms in studies at the clinical

level. The hydroxycitric acid which is derivative of the subtropical plant, Garcinia

gummi-gutta, has been utilized as dietary product and outdated treatment in an

Asian country (India), proposing hydroxycitric acid as chemo anticipatory diet

supplement [30,112].
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Figure 2.8: A model for regulation of Acetyl-CoA with lipogenic genes (Ozkaya
et al., 2015).

Acetyl-CoA carboxylase (ACC) form malonyl CoA by carboxylation of acetyl-CoA,

catalyzes the dedicated step, and in the FA synthesis pathway is the most regu-

lated enzyme [146]. An ATP dependent enzyme acetyl CoA carboxylase (ACC)

carboxylate acetyl-CoA and transforms into malonyl CoA that further act as an

active site for enzyme “FAS” in the production of fatty acids [133]. ACC has

two isozymes i.e. α and β; their functions have been controlled with the help

of different factors such as hormones, nutrition, and another biological stimulus

[113]. ACC alpha seems functional for development at an embryonic stage as a

mouse deficient with an ACC alpha is embryonic lethal. In contrast, it has been

described that in tumor cells levels of ACC alpha of RNA and protein have been

increased and these have been also related to the up-regulation of expression of

FAS [114]. Remarkably, phosphorylated ACC in lung cancer has initiated to be

intensely amplified and other cancer cells, even though it has been found in an

unregulated form and its function has been associated with good persistence of

diseased (cancer) patients [115].
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Palmitate serves as an energy source and an essential cell membrane constituent.

However, it serves as a signaling molecule, although in tumor production its role

has not clear yet [63]. Nonetheless, a small molecule which can definitely stop

the activity of ACC has been observed as predictable anti-cancer drug which will

strongly work [30,103].

Fatty Acids Synthase (FAS), with multifunctional ability, consist of seven func-

tional domains (MAT; malonyl-CoA-/acetyl-CoA-ACP-transacylase, KS; β-m ke-

toacyl synthase, DH; dehydratase, TE; thioesterase, KR; β-ketoacyl reductase,

ER; β-enoyl reductase, ACP; acyl carrier protein) [116-118]. All these activities

combine use malonyl-CoA and Acetyl-CoA as a donor of carbon and primer respec-

tively for the synthesis of fatty acid. The FAS gene expresses itself in abundance

during the development at the embryonic stage, but its expression has delimited

to lactating breast, liver, and brain in mature tissues [119-120,115]. Alternatively,

in different types of cancers FAS is up-regulated considerably at an embryonic

stage and expression of FAS has absolutely related with of patient’s poor survival

[122-124]. In breast cancer, at the premalignant stage, both HER2 and FAS have

expressed such as DCIS (Ductal Carcinoma in Situ) [125-126], and their expression

level tends to increase in malignant cells. Significantly, in tumor (cancerous) cells

by inhibiting expression of FAS by using small chemicals or siRNA persuades cell

arrest and cell death. Therefore, these results suggest that FAS is involved in the

early stage of tumor production, feasibly by blocking cell death (apoptosis). FAS

gene has been considered a perfect therapeutic target for treatment in cancer cells.

Indeed, usage of some pharmacological FAS inhibitors such as C75, cerulenin, and

Orlistat can cause the arrest of cell cycle and cell death (apoptosis) for treatment

of cancer cells [122-124]. FAS enzyme has a unique secretory form. ELISA, has

identified , the rate of expression of FAS in serum has firmly concomitant with the

stage of tumor and patients survival in different cancers, suggesting the efficacy of

secretion as a prognostic and diagnostic tool [132,135].
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2.8 Drugs for FASN

The primary recognized FASN inhibitor is Cerulenin and as a part of anti-infection

agents in metabolic pathways [196]. For FASN It is a noncompetitive inhibitor

and on the end part of KS domain it binds covalently with the hydroxyl of serine,

surrounds hydroxyl-beta-lactam that results in blocking of fatty acid synthesis.

the formation of long chain fatty acids is primarily repressed by Cerulenin and

leaving the ordinary cells unaffected while other cells restrain the development of

cancerous cells [197]. Though, the use of Cerulenin is restricted due to its unstable

structure and high poisonous quality levels.

Orlistat (1-(3-hexyl-4-oxooxetan-2-yl) tridecane-2-yl 2-formamido-4-methyl pen-

tanoate) are some Other FASN inhibitors that can possibly be utilized as cancer

therapy drugs and advertised as a solution in many countries [198]. Latest studies

have demonstrated that the TE domain of the FASN may also be effected by Orli-

stat. Presently, Orlistat is the main FASN inhibitor under clinical use [199]. The

different product from Orlistat, for example, the beta-lactam products of Orlistat

distinguished, have indicated the great inhibitory impact on FASN expression. In

this manner, for future research on FASN inhibitors, the advancement of Orlistat

and its products will be a vital approach [200].

Few natural plant-extracted polyphenols like Epigallocatechin-3-gallate (EGCG)

present in green tea is recognized to have a FASN inhibitory impact higher than

that of C75 [195]. KR domain of the FASN is affected by EGCG which is con-

sidered as a high micromolar time-dependent inhibitor of FASN. According to

previous studies, FASN is not only inhibited by EGCG but it also blocks HIF-1-

alpha by repressing PI3K/Akt signaling pathway. In recent, EGCG is declared

as an inhibitor in tumor development and in breast tumor xenograft models it

is used as an important part of study [200-201]. Some limitations are there for

EGCG as a FASN inhibitor, and its FASN restraint impact can, in any case, be

enhanced. Earlier examinations have demonstrated that, after the solid corrosive

and warming treatment of EGCG, FASN inhibition will be significantly expanded,

and this raises the chances that the more impact is because of the alteration in
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the chemical part of catechin. Though, the subsequent investigation demonstrated

that EGCG behaves unstably after strong acid and heat therapy [189-190]. The

starting product is unstable too, which makes it hard to examine its molecular

structure and properties.

Other FASN inhibitors incorporate urea extracted compounds, for example, GSK83

7149A and can particularly stop the KR domain of FASN [198]. In 2000, Lot-

fus and his colleagues identified a tiny molecule, a structurally altered type of

Cerulenin to be a novel FASN inhibitor, the C75 [196-197]. It is a subsidiary

of 3-carboxy-4-alkyl-2-methylenebutyrolactones that reduced the harmfulness of

Cerulenin and plays out a superior particular inhibitory impact than Cerulenin.

Research has demonstrated that the inhibitory impact of C75 on FASN changed

from that of Cerulenin [10,189,198].

Table 2.2: Herbs with promoting blood circulation for removing blood stasis
functions with strong FASN inhibitory effect (Cheng et al., 2014).

Promoting blood cir-

culation by removing

blood stasis

Chemical component Pharmacological action

The fruit of Crataegus

pinnatifida Bunge

Catabolic acid; Chlorogenic

acid; Epicatechin; Epicate-

chol; Flavonoids

Blocking synthesis of ni-

trosamine

Rosa chinensis Jacq. Gallic acid Anti-breast cancer; an-

tithyroid neoplasm

Paeonia veitchii

Lynch

Paeoniflorin; Galloylpaeoni-

florin; Paeonol; Lacioflorin;

Catechin

Antitumor

Paeonia suffruticosa

Andr.

Paeonol; Paeonoside;

Paeonolide; Paeoniflorin;

Gallic acid; Phytosterol;

Alkaloid

Antitumor; immunoreg-

ulation; bacteriostat



Literature Review 33

Spatholobus suberec-

tus Dunn

Daidzein; Epicatechin; Pro-

tocatechuic acid; Brassi-

casterol; Stigmasterol; β-

sitosterol; Auriculatin

Antitumor; bacteriostat

Polygonum cusp-

idatum Sieb, etc

Zucc

Polydatin; Emodin;

Physcion; Chrysophanol;

Citreorsein; Anthraglyc-

side; Resveratrol

Antitumor; immunoreg-

ulation; antibiosis; an-

tivirus; elevation of white

blood cell counts

Herba lycopi Essential oils; Flavonoid

Glycosides; Saponins; Phe-

nols; Tannins

Antitumor, immunoregu-

lation
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3.1 Pathway Retrieval and Updated through Lit-

erature

3.1.1 Glycolysis Pathways

In recent times, analysis based on Protein-Protein Interaction has become an in-

novative approach or target for drug treatment in cancer and the development

of accurate and specific medication [133-134,131-132]. As compared to traditional

drug designing method, which mostly emphasizes on the activation or inhibition of

a receptor or an enzyme of a single protein that has target for treatment, designing

of drug on the bases of PPI which is involved in control of many vital biological

procedures by inhibiting or blocking of PPIs interface, it is a very innovative and

inventive method for discovery of drug, particularly for treatment of cancer [79].

In many biological studies at the clinical and elementary level, it has been having

decided that the hubs and nodes predictions of PPI which have an essential role

in transforming cells in case of cancer. And the protein-protein interactions which

are related to cancers have turned into therapeutic targets for cancer. With the in-

terference in the reality of protein-protein interaction and with the advancement of

technologies for the predictions of modulators in protein-protein interactions and

the validation of their pairs, drugs against cancer have made [133,135]. Many tar-

gets against protein can find out by using Systems biology which can be repressed

instantaneously, as these proteins behave in a network so rather than focusing on

a single protein it will provide multi targets [132].

Prominent climaxes of tumor breakdown were found Otto Warburg, demonstrating

that growth cells use glucose amount and discharge it as lactate with the avail-

ability of oxygen, a mechanism introduced at high-impact known as “glycolysis”

or the “Warburg effect” [12]. As compares to it ordinary cells utilizing glucose of

mitochondria by means of the tricarboxylic acid in TCA cycle. This sensational

increment in glucose take-up by tumor (cancerous cells) has manipulated at clinics
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Figure 3.2: Metabolism of Carbohydrates.

stage to imagine disease by (18F)- 2-deoxy-D glucose positron outflow tomography

(FDG-PET) [172].

The high regulation of pathway is interconnected with the capacity of best growth

tumor to metastasize [65]. Moreover, genome studies have revealed serine pro-

duction is the basis cause for the propagation of many cancers. The genes for the

phosphoglycerate dehydrogenase (PHGDH) which is the enzyme for that catalyzes

the basic cause to speed up the production of serine, exceptionally communicated

in a few tumors, and melanoma and breast disease cells with PHGDH enhance-

ment occupy huge glucose related carbons into glycine and biosynthesis of serine

[161,167].

Mutation in IDH has not only reduced the capacity to convert isocitrate to a-

ketoglutarate but it also reduces the production of 2 hydroxyglutarates (2HG)

by utilizing a-ketoglutarate (143) and that is the numeric condition in AML and

glioma. Particularly artificially synthesized inhibitors for the mutation in IDH1

and IDH2 have at clinics trials [152].
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The helpful impacts of focusing on a few metabolic proteins have been explored.

For example, glycolytic inhibitors, for example, GLUT1inhibitor and 2-deoxyglucose

experienced trials in clinics [146,10,45].

TCA cycle derived citrate and NADPH synthesized endogenous fatty acid, which

can be delivered by different catalysts and PPP. In the cytosol, ACL converted

the citrate into oxaloacetate and acetyl-CoA [62].

3.1.2 Lipogenesis

 

Figure 3.3: Lipogenisis Pathway.

High starch nutrition together with increased insulin levels in liver and fat tissue

fortifies fat synthesis to change over overabundance sugars into unsaturated fats

and triglycerides for energy storing [69,100]. The formation of palmitate from

acetyl-CoA and malonyl-CoA is catalyzed by FASN. Acetyl-CoA-carboxylase is

another critical enzyme in fatty acid formation whose function is to feed FASN

with malonyl-CoA which is catalyzed to malonyl-CoA from the ATP-subordinate

carboxylation of acetyl-CoA, and in this manner going about as the rate-limiting
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enzymes in the fatty acid formation pathway [103]. SREBP1 is one of the key

proteins directing the action of these catalysts and of membrane phospholipid

synthesis and this is empowered by insulin which has an important part in hepa-

tocytes [105].

The upregulation of ACC1and FASN is an early occasion in tumor development,

In scattered cells of lobules and terminal conduits in ordinary breast tissue the

expression of these enzymes happens and in carcinomas the expression ends up

noticeably serious and most noteworthy articulation is found in high-review ductal

carcinomas in situ [107,109]. In breast cancer, SREBP1 is considered as the key

controller of FASN and ACACA.

Lipogenic catalysts, for example, acetyl-CoA carboxylase (ACC), ATP citrate

lyase (ACLY) and fatty acid synthase (FASN) show increased expression level

that enhances formation of cholesterol [178], express all inclusive changes pheno-

typically in many cancer. Increase level of expression of FASN expects reduced

prognosis in cancer patients. The level of expression shows up at the sore stage of

precancerous and continues in prostate and breast tumors [198].
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3.1.3 Signaling Pathway

 

Figure 3.4: Signalling Pathway
(DeBerardinis & Chandel, 2016; Cheng et al., 2014; Zhang, 2012).

3.2 Model Development

The model of metabolic Pathways is drawn in MATLAB, is a high-performance

language for technical computing. It integrates computation, visualization, and

programming in an easy-to-use environment where problems and solutions are ex-

pressed in familiar mathematical notation. Typical uses include Data analysis,

exploration, and visualization. MATLAB Simbiology, which provides a block dia-

gram editor for building models, or can create models programmatically using the

MATLAB language. SimBiology includes a library of common PK models, which

you can customize and integrate with mechanistic systems biology models.
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3.3 Parameters Estimation

With the help of Protparam tool parameters of all proteins were collected. Pa-

rameters mean size or weight represented specifically in units. ProtParam, a tool

which certifies the estimation and calculation of different chemicals and physical

parameters for a given protein existing in the format of TrEMBL or Swiss-Prot

and also facilitates sequences of proteins. The calculated parameter provides the

hypothetical PI, atomic composition, molecular weight, amino acid composition,

estimation of half-life, aliphatic index, extinction coefficient instability index, hy-

dropathicity grand average [111].

3.4 Simulation of Pathway

A simulation of the system is basically the operation of the system model. Simu-

lations are used to check the system behavior by representing it as a mathematical

model. Prior to the model can be simulated it is crucial to determine the under-

lying values and parameters produced for simulating the model [54][89].

3.5 Drug Cocktail and Parameter Estimation of

Drugs

By using the 2D structures of above drugs of FASN and SLC25A1, 5 different com-

binations of functional groups has made as a ”Drug cocktail” which is a modified

drug designed with the best combinations of functional groups of FDA approved

drugs for breast cancer with the help of Chemdraw, a tool for drawing and editing

of molecules developed by David A. Evans and Stewart Rubenstein in 1985 but

now sold to PerkinElmer in 2011. It’s a really helpful tool in joining of functional

groups because it shows error if the bond/linkage is not accurate.
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All the parameters i.e. physiochemical properties, ADME properties of drugs are

calculated by using “swissadme” a free web tool for evaluating the pharmacoki-

netics, medical chemistry friendliness of small molecules, drug likeness etc. it

describes the physiochemical properties and predict ADME paramters. It is easily

accessible at www.swissadme.ch.

Physiochemical properties are confirmed from second tool ACD/I-lab also estimate

probabilistic effect of drug cocktails on health, it’s a predicting engine. It estimates

the physiochemical properties, chemical shifts and ADME toxicities. The browser-

based I-Lab software also assesses prediction reliability and includes searchable

content databases.
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Stretegy for drug cocktail desinging 
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Figure 3.5: Strategy for drug cocktail designing.
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Results and Discussion

4.1 Pathway Retrieval and Updated through Lit-

erature

4.2 A Comprehensive pathway

The metabolic pathways are closely associated with the Signaling Pathway, such

as many of the steps of metabolism of Carbohydrates are controlled by P53 or

other cell growth controlling signaling genes and proteins. Similarly, in case of

Liopgenisis, many important enzymes are controlled by signaling pathway, for ex-

ample, SREBP-1 is a gene involved in the production of FASN, PI3k/Akt, HER-2,

and mTOR etc are important regulatory elements of metabolic pathways without

these elements completion of the process is impossible. That is the reason we

combine these three pathways by using a tool ”PathVisio”, a tool for editing and

analyzing the Biological Pathways. It is an open source project founded by De-

partment of Bioinformatics at Maastricht University and Gladstone Institutes. It

allows drawing, editing and analyzing biological pathways. It helps in visualiz-

ing own experimental data on the pathways and find relevant pathways that are

over-represented in your data set. It has its own Plugins that are extensions for

43
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providing advanced analysis method, visualization options and extra functional-

ity of import/export. It can be easily accessed at https://www.pathvisio.org. A

comprehensive pathway based on glycolysis, lipogenesis and growth factors was

developed to deposit the interaction of signaling to metabolic pathways using lit-

erature.Verification of role of each component of pathway has been done using

literature and has been provided in table no. 4.1 and 4.2.

 

Figure 4.1: Combine form of metabolic pathways and Signaling Pathway
(https://www.pathvisio.org.)

After a detailed literature study the required pathways of FASN were identified

and drawn in the Simbiology toolbox of MATLAB version 2016.

4.3 Parameters Estimation

Reaction rate of each specie in the model required several parameter values such

as molecular weight of each gene and or enzyme and kf, shown in the table 4.1.
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Table 4.1: Verification of glycolysis pathway through literature.

Glycolysis References Cell lines Reference
Carbohydrate→glucose,

Glut→p53
[173][10][164]

[128]
MCF-7

MDA-MB-436
[10][204][205]

Glucose→G6P,
HK2

[173][10][164]
[128]

MDA-MB-231
MDA-MB-435

[10][204][205]

G6P→6PGSL,
G6P dehydrogenase

[3][10]
MCF-10
MCF-7

[10][204][205]

6PGSL→6PG,
lactonase

[3][10]
MCF-10

MDA-MB-436
[10][204][205]

6PG→Malonyl Coa,
6PGDH

[3][10]
MDA-MB-231
MDA-MB-436

[10][204][205]

G6P→Pyruvic acid,
TIGAR,PK21

[3][10][103]
MCF-10

MDA-MB-435
[10][204][205]

Pyruvic acid→pyruvate,
PKM2

[3][10][103]
SKBR3

MDA-MB-436
[10][204][205]

Pyruvate→acetyl Coa,
PDH

[173][164][128]
MCF-7

MDA-MB-435
[10][204][205]

Pyruvate→oxaloacetate,
PC

[3][10][103]
MDA-MB-231

MCF-10
[10][204][205]

oxaloacetate→citarte [3][10][103] MDA-MB-435 [10][204][205]
Citrate→isocitrate [3][10][103] MDA-MB-436 [10][204][205]

Isocitrate→alpha-KG,
IDH2

[3][10][103] MDA-MB-231 [10][204][205]

Alpha-KG→succinate,
Glutamate

[128][173]
SKRB3
MCF-7

[10][204][205]

Succinate→Fumarate,
SDH

[3][10][164]
MDA-MB-231

MCF-10
[10][204][205]

Fumarate→molate,
FH

[3][10][103]
MDA-MB-435

SKRB3
[10][204][205]

Molate→oxaloacetate,
PC

[3][10][103]
MCF-7

MDA-MB-436
[10][204][205]
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Table 4.2: Verification of lipogensis pathway through literature.

Lipogensis References Cell line Reference
Citrate→Acetyl Coa

ACLY
[3][10][202][203]

MCF-7
MDA-MB-231

[10][202]
[205][204]

AcetyCoa→MalonylCoa

ACC
[3][10][164][202][203]

MBA-MB-468
MBA-MB-231

[202][203]
[10][205]

MalonylCoa→Palmitate,
FASN

[10][202]
MCF-10

MDA-MB-435
[202][203]
[10][205]

Palmitate→TG [10][173][202]
MCF-7

MDA-MB-231
[202][203]
[10][205]

TG→Fatty acids [3][10][164][202]
MCF-10

MDA-MB-231
[202][203]
[10][205]

Fatty acid→Acetyl,
Coa

[3][10][164][202]
MDA-MB-435
MDA-MB-436

[202][203]
[10][205]
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Table 4.3: Estimated parameters of Metabolites of pathway (https://web.expasy.org/protparam/)

Metabolite No.of A.A
Mol.

weight
Chemical
formula

Estimated
half-life

Instability
Index

Grand-average
hydropathicity

kf

Carbohydrate 770 86943.25 C3774H5910N1048O1227S42 30 hours 40.69 0.584 0.586
Glucose 492 54083.78 C2503H3916N622S23 30 hours 36.57 0.534 0.518
G6P 515 59256.57 C2662H4123N727O765S22 30 hours 40.30 0.370 0.354
G6P
dehydrogenase

515 59256.57 C2662H4123N727O765S22 30 hours 40.30 0.370 0.354

TCA cycle 536 59834.76 C2663H4173N731O800S20 30 hours 43.76 0.473 0.457
lactonase 354 39607.49 C1797H2802N458O525S12 30 hours 32.86 0.021 0.134
6PG 636 74571.25 C3261H5001N967O959S46 30 hours 38.14 0.944 0.928
6PGDH 483 53139.98 C2736H3725N643O694S23 30 hours 26.44 0.150 0.134
SLC25A1 311 34012.69 C1529H2447N435O417S13 30 hours 21.19 0.065 0.049
Pyruvic acid 1178 129633.5 C5767H9123N1631O1690S48 30 hours 39.02 0.169 0.153
Pyruvate 574 61830.17 C2728H4437N787O810S19 30 hours 36.91 0.041 0.025
Citrate 1101 120839.2 C5422H8544N1446O1578S50 30 hours 33.07 0.105 0.089
Iso-Citrate 414 46659.60 C2085H8544N1446O1578S50 30 hours 28.16 0.392 0.023
FASN 2511 273426.6 C12169H19258N3382O3602S89 30 hours 45.94 0.070 0.054
Triglycerides 267 30777.83 C1367H2173N381O419S4 30 hours 40.83 0.717 0.701
Palmitate 533 60947.55 C2797H4218N708O790S17 30 hours 38.00 0.237 0.221
Fatty Acids 472 53953.36 C2409H3764N616O689S21 30 hours 37.47 0.015 0.000839
Acetyl-CoA 559 64009.28 C2838H4484N798O837S26 30 hours 49.44 0.461 0.445
Malonyl-CoA 493 55003.40 C2467H3912N696O698S16 30 hours 40.21 0.204 0.188
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4.4 Simulation of Pathway

The designed model was validated for appropriate parameters by performing sim-

ulations of the model. Simulations are shown in fig. 4.3.

 

Figure 4.2: Simulation of lipogensis pathway.

Figure 4.3 represents the simulations of abnormal pathway in which FASN is over-

expressed due to certain mutations, over expression of FASN also results in the

down-regulation or up-regulation of other genes of the pathway. The Y axis rep-

resents the states that are proteins such as FASN, SLC25A1, Acetyl-CoA, and

Malonyl-CoA etc. X axis represents time unit. The simulation time was set for

10 hours and change of rate of regulation of proteins was determined for each ten

hours, Different behaviors of proteins were observed in the simulations due to co

expression. As the up regulation of acetyl-coA from 0.62e−6 to 2.5e−6 also up

regulated the malonyl-coA from 0.6e−6 to 2.5e−6. Increased amount of acetyl coA

is facilitated with the continuous supply of citrate of Citric acid cycle Due to up

regulation and down regulation of these proteins, there is a continuous increase in

the level of FASN and results in the up-regulation of FASN at 2.73e−6, which is

quite high.
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4.5 Identification of Key Nodes for Therapeutic

Purpose

The network has been developed by using a framework “fun coup”, that infers

genome-wide functional coupling in 17 model organisms. The word fun coup refers

to the functional coupling. Functional coupling/association is an unspecific form of

association that encompasses the direct physical interactions but also more general

types of direct or indirect interactions like regulatory interaction or participation of

the same pathway. It also differentiates between 5 different classes of interactions.

It is easily accessible at http://funcoup.sbc.su.se/search/.

It provides us strongest coupling class for each gene pair and there four hub nodes

with black which are responsible for abnormalities in the pathway of lipogenesis.

These are FASN, SLC25A1, ACLY, SCD, which have been already verified from

the literature to play a key role in Breast cancer. The network of genes is shown

in figure 4.4.

 

Figure 4.3: Hub nodes in lipogensis pathway using FunCoup
(http://funcoup.sbc.su.se/search/)
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4.5.1 Interactors of Network

The confidence ratio obtained from the network prediction is 80.7. It provides

us strongest coupling class for each gene pair and there four-light light genes and

proteins with black which are responsible for abnormalities in the pathway of lipo-

genesis. These are FASN, SLC25A1, ACLY, SCD, which have been already verified

from the literature that is playing the key role in Breast cancer. The normal and

abnormal functions of these genes and proteins are to regulate the lipogenesis

pathway by performing their particular roles i.e. ACLY bonds metabolic Path-

way of glucose and Fatty Acid by the conversion of citrate into oxaloacetate and

the precursor for fatty acids synthesis i.e. 2 carbon acetyl-CoA, Reduced ACLY

decreases the cells ability of metabolism of glucose into lipid as demonstrated ade-

nocarcinoma cells in human by siRNA [83,89]. All these activities combine used

malonyl-CoA and Acetyl-CoA as the donor of carbon and primer respectively for

the synthesis of fatty acid. The FAS gene expresses itself in abundance during

development at the embryonic stage, but its expression has delimited to lactating

breast, liver, and brain in mature tissues [114-115,120]. Alternatively, in differ-

ent types of cancers FAS is up-regulated considerably at an embryonic stage and

expression of FAS has absolutely related with of patient’s poor survival [122-124].

 

Figure 4.4: Representing the interactors of lipogensis pathway
(www.funcoup.sbc.)
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4.5.2 Interactions of Network

The interaction view lists all the interactions between subnetwork genes and shows

detail about how the links that have been derived. Suspected genes are highlighted

in Yellow color and Green shows the Orthologs. In log likelihood Ratio, green and

red colors show the highly positive and Highly Negative LLR values for different

evidence types and species. And the blue color is representing the known coupled

pairs in the PPI of our pathway.

 
 

 
 

Figure 4.5: Representing the interactions between genes of lipogensis pathway
(www.funcoup.sbc.)



Results and Discussion 52

4.6 Drugs for Key Nodes of Lipogenesis Pathway

All drugs for these highlighted proteins and gene have been obtained from Drug

Bank. Durg Bank (www.drugbank.ca) is an extravagantly developed skill that

associates certain drug data with an extensive target of drug and metabolite data.

Drug Bank has been mostly used to encourage the disclosure of in silico drug tar-

gets, drug outline, screening or docking of the drug, prediction of drug metabolism,

prediction of drug interaction, and general instruction about pharmaceutics. It has

data about FDA-affirmed drug molecules and biotech drugs. Drug Bank can be

accessed by using http://www.drugbank.ca(Wishart et al., 2007).

Table 4.4: Drugs against FASN (www.drugbank.ca)

Phentermine Lactic acid Eugenol xylometazoline Doxylamine Phenol 

 
  

 

 

 

 

 

www.drugbank.ca www.drugbank.ca www.drugbank.ca www.drugbank.ca www.drugbank.ca www.drugbank

.ca 

 

Table 4.5: Drugs against SLC25A1 (www.drugbank.ca).

 

Josamycin      Vidarabine                                        

 

Antazoline 5-methyltetrahydrofolic acid        

 

 

 

 

www.drugbank.ca www.drugbank.ca www.drugbank.ca www.drugbank.ca 
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4.6.1 Drug Parameters

All drugs have been collected from Drug bank which has FDA approved drugs and

their all physiochemical and ADME properties were estimated by using Swissasme

tool (www.swissadme.ch) by directing using structure of cocktails as input. These

properties of cocktails and probabilities of their health effects were predicted using

ACD/I-lab reports (https://ilab.acdlabs.com/iLab2/).

Table 4.6: Drugs against FASN and its Physiochemical and ADME properties
(www.drugbank.ca)(www.swissadme)(https://omictools.com/protox-tool)

 

Drugs 

FASN 

Dosage Route Ingredients Chemical 

formula 

IUPAC name toxicity LD50  

Value 

Status Type 

Phenterm

ine 

Capsule

/tablet 

oral Phentermine Hydrochloride 

(3.75 mg/1) + Topiramate 

(23 mg/1) 

C10H15N  

2-methyl-1-

phenylpropan-2-

amine 

Class 2 10 mg/kg  approve

d 

Small 

Molecule 

Lactic 

acid 

Injectio

n 

Intraven

ous 

Sodium lactate (310 mg) + 

Calcium Chloride (20 mg) + 

Potassium Chloride (328 

mg) + Sodium Chloride (600 

mg) 

C3H6O3  

2-

hydroxypropanoic 

acid 

Class 3 75 mg/kg approve

d 

Small 

Molecule 

Eugenol Liquid/ 

gel 

Topical Eugenol (.0416 

g/g) + Guaiacol (.0416 g/g) 

C10H12O2  

2-methoxy-4-

(prop-2-en-1-

yl)phenol 

Class 4 1930 

mg/kg 

Approve

d  

Small 

Molecule 

 spray Nasal  Xylometazoline 

hydrochloride (.05 

%) + Antazoline sulfate (.5 

%) 

C16H24N2  

2-[(4-tert-butyl-

2,6-

dimethylphenyl)me

thyl]-4,5-dihydro-

1H-imidazole 

Class 3 75 mg/kg approve

d 

Small 

Molecule 

Doxylam

ine 

Tablet  Oral  

Doxylamine succinate(6.25 

mg/1) + Acetaminophen (32

5 

mg/1) + Dextromethorphan 

hydrobromide (15 mg/1) 

 

C17H22N2

O 

 

dimethyl({2-[1-

phenyl-1-(pyridin-

2-

yl)ethoxy]ethyl})a

mine 

Class 4 470 

mg/kg 

Approve

d  

Small 

Molecule 

Phenol Injectio

n/ 

solution 

Intrader

mal; 

Subcuta

neous 

Phenol (0.45 

%) + Benzocaine (6.5 

%) + Camphor (0.25 

%) + Menthol (0.25 %) 

 

C6H6O 

Phenol Class 3 270 

mg/kg 

Approve

d 

Biotech 
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Table 4.7: Drugs against SLC25A1 and its Physiochemical and ADME proper-
ties (www.drugbank.ca)(www.swissadme)(https://omictools.com/protox-tool)

Drugs 

SLC25A1 

Dosage Route Ingredients Chemical 

formula 

IUPAC name toxicity Status Type LD50 

value 

 

Vidarabine 

liquid oral Not available C10H13N5O4 (2R,3S,4S,5R)

-2-(6-amino-

9H-purin-9-

yl)-5-

(hydroxymeth

yl)oxolane-

3,4-diol 

Class 2 Approved, 

Investigation

al 

Small 

Molecule 

8mg/kg 

 

Antazoline 

Capsule/

liquid 

drops 

Ophthal

mic/oral 

 

Antazoline (225 

mg/1) + Cholecalcifer

ol (6.25 

ug/1) + Cyanocobalam

in (15 ug/1) + Folic 

Acid(1 

mg/1) + Iron (38 

mg/1) + Magnesium 

oxide(15 

mg/1) + Pyridoxine 

hydrochloride (30 

mg/1)+ Tocopherol (1

0 mg/1) + Calcium 

ascorbate (18 

mg/1) + Zinc oxide (1 

mg/1) 

C17H19N3 N-benzyl-N-

(4,5-dihydro-

1H-imidazol-

2-

ylmethyl)anili

ne 

Class 4 Approved Small 

Molecule 

398mg/

kg 
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5-

methyltetra

hydrofolic 

acid 

Tablet/ 

capsule 

Oral  5-

methyltetrahydrofolic 

acid (.5 

mg/1) + Sodium 

sulfate (8 

mg/1) + Sulfur (388 

mg/1)+ Thiosulfuric 

acid (1.8 mg/1) 

C20H25N7O6 (2S)-2-[(4-

{[(2-amino-5-

methyl-4-oxo-

1,4,5,6,7,8-

hexahydropteri

din-6-

yl)methyl]ami

no}phenyl)for

mamido]penta

nedioic acid 

Class 4 Approved, 

Nutraceutica

l 

Small 

Molecule 

1000mg

/kg 

Hydroxypr

opyl 

cellulose 

Pellet Ophthal

mic 

Lacrisert 5 mg/1    Approved Small 

Molecule 

10200 

mg/kg 

(oral, 

rat) 

Josamycin      -   C42H69NO15 (2S,3S,4R,6S)-

6-

{[(2R,3S,4R,5

R,6S)-6-

{[(4R,5S,6S,7

R,9R,10R,11E,

13E,16R)-4-

(acetyloxy)-

10-hydroxy-5-

methoxy-9,16-

dimethyl-2-

oxo-7-(2-

oxoethyl)-1-

oxacyclohexad

eca-11,13-

dien-6-

yl]oxy}-4-

(dimethylamin

o)-5-hydroxy-

2-methyloxan-

3-yl]oxy}-4-

hydroxy-2,4-

dimethyloxan-

3-yl 3-

methylbutanoa

te 

Class 4 Approved, 

Investigation

al 

Small 

Molecule 

1000mg

/kg 

Interferon 

Alfa-2a, 

Recombina

nt 

Liquid/ 

Powde

r for 

solutio

n 

Intramus

cular; 

Subcutan

eous 

 C860H1353N227

O255S9 

  Approved, 

Investigation

al 

Biotech  
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4.6.2 Drug Cocktails

In the field of therapeutics “Systems biology” recreates the regulatory interactions

and relationships within metabolic, genetic, and PPI networks. These networks

of biological pathways are highly complex consequently healthiness and specifity

are their important features [64-65]. Due to interweaving of networks that show

with the inhibition of single protein. It is not possible to suppress the expression

of whole network [179-180]. So with the help of “Systems biology” researcher has

become able to target many proteins by using drugs with their modified forms as

combinations of drugs titled as drug cocktail, which have less toxicity and show

more stable results in the behavior of any abnormal/mutated network . And at

the same time this strategy will provide the more beneficial effects. Furthermore

recently in the field of research it has validated that inhibition of PPI has become

a different innovative strategy for treatment of cancer [98].

All the below given information about physiochemical and ADME properties have

been calculated by using “Swissadme” at www.swissadme.

Health effects and probabilistic effects of all cocktails on the health have been

estimated by using ACD/I-lab.

4.6.3 Cocktails Design

About five different drug cocktails were designed by combining the active func-

tional groups of the drugs, already used to treat FASN and other key nodes. The

designed cocktails are shown in table 4.7.
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Table 4.8: Structure of Drug Cocktails designed by using Chemdraw

 

Cocktail 1 

 

Cocktail 2  

Cocktail 3 

 

Cocktail 4 

 

Cocktail 5 

 

The physiochemical and ADME properties of the cocktails are shown in table 4.8.
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Table 4.9: The physiochemical and ADME properties of the cocktails
(www.drugbank.ca)(www.swissadme)(https://omictools.com/protox-tool)

Cocktail 1
Cocktail

2
Cocktail 3 Cocktail 4 Cocktail 5

Chemical
formula

C11H14N2O C22H25NO3 C26H32N2O C17H22N2 C10H12ClN5O4

Toxicity Class 4
Class

5
Class 3 Class 2 Class 2

LD50 800 mg/kg
2500

mg/kg
470

mg/kg
35 mg/kg 13 mg/kg

Molecular
weight

190.24 g/mol
351.44
g/mol

388.55 g/mol 254.37 g/mol 301.69

LogBB 0.01 0.01 0.24 0.14 0.01
TPSA 58.61 73.05 25.36 38.91 125.5
LogS -1.35 -3.96 -5.52 NA -1.69
Logp 1.76 3.23 4.10 2.98 1.18
Density 1.22 1.16 1.052 1.035 2.07
No.
of H donor

3 3 0 1 4

No.
of H acceptor

3 4 3 2 7

Molar
Refractivity

54.12 102.06 120.24 80.63 67.56

Molar
Volume

155.0 301.2 369.3 245.7 145.4

Lipinski
violation

No No No No No

All the cocktails were also checked for the side effects and several probability

values of the side effects were calculated, which determine the ratio of effects of

the cocktail on the living organism. The side effects are shown in table 4.9. given

below.
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Table 4.10: The probabilities of health effects of the cocktails on the organism (https://ilab.acdlabs.com/iLab2/)

Cocktail
Probability effect

on Blood
Prob. effect

on Cardiovascular
Prob. effect

on Gastrointestine
Prob. effect

on Liver
Prob. effect

on Lungs
Prob. effect
on Kidney

Cocktail 1 0.27 0.47 0.52 0.14 0.58 0.06
Cocktail 2 0.93 0.80 0.89 0.64 0.95 0.59
Cocktail 3 0.32 0.79 0.85 0.33 0.88 0.77
Cocktail 4 0.73 0.83 0.70 0.17 0.86 0.6
Cocktail 5 0.58 0.63 0.83 0.81 0.91 0.28
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From the results of table 4.6.3 it is confirmed that all the cocktails have very

minimal side effects and none of the probabilities is greater than 1.0.

Table 4.11: Toxicity of Cocktails (https://omictools.com/protox-tool)

Cocktail Cocktail 1 Cocktail 2 Cocktail 3 Cocktail 4 Cocktail 5
Toxicity Class 4 Class 5 Class 3 Class 2 Class 2

As cocktail 2 is less toxic as compare to other cocktail that is the reason of it’s

selection and introduced as dose in the abnormal pathway modeled in Simbiology

MATLAB (2016).

Functional Groups of Cocktail 2 which is used in Drug controlled Simulation.

 

 
Figure 4.6: Aromatic benzene (a)

 

 
Figure 4.7: Benzene with fig (a)

 

 Figure 4.8: Aromatic benzene with fig (b)



Results and Discussion 61

 

 Figure 4.9: Hydroxy methyl group (c)

 

 Figure 4.10: fig (b) with (c), (e)

 

 
Figure 4.11: fig (e) wih hydroxyl group, (f)

 

 
Figure 4.12: fig (f) with (c), (g)

Pa (probability “to be active”) provide the probability that the compound is fit

in to the sub-class of active compounds

Pi (probability “to be inactive”) provide the probability that the compound is fit

in to the sub-class of inactive compounds
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Only activities with Pa > Pi are considered as possible for a particular compound.

If The Pa ¿ pi and is less than 1.0, it means there are very few chances that it

can produce predicted side effects, there are 90% chances that the compound has

a high novelty and may become New Chemical Entity (NCE), if the pa > 1.0 it

means that there are 90% chances that it can produce the predicted side effects.

4.7 Simulation of Pathway with Dose

4.7.1 Model Development

The developed pathway model is given in figure 4.13.

 

Figure 4.13: Model development of metabolic pathway.

In the metabolism, normal cells utilized the glucose of mitochondria by means of

tricarboxlic acid in TCA cycle. The glucose is converted into pyruvate with the

help of important enzymes and introduced into TCA cycle for the production of

energy but in case of aggressive cancer cells which not only relay on glycolysis
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i.e Warburg Effect, also interact with lipid metabolism [10]. It starts a dietary

independent method, utilizes high rate of de novo fatty acid synthesis. In which

more production of acetyl-coA and malonyl-coA starts which further catalyzed by

FASN to produce palimtate and triglycerides/16-C saturated fatty acids. In the

pathway each gene and or enzyme is linked with a certain reaction the � sign

in the model represents the reversible reaction,→ represents the forward reaction

from one metabolite to other. The FASN is of main concern in this research work

therefore FASN is represented as being dosed by cocktail in the model.

4.7.2 Dose with 100mg Drug

100 mg dose of cocktail was induced in the model and FASN was set as the drug

target to determine the efficacy of cocktail 2. Following simulations were produced

 

Figure 4.14: Simulations for 100 mg dose of cocktail 2.

Y-axis representing the level of FASN and X-axis represents the dose time. From

the above graph it is clear that first the level of FASN was more than 2.74e−6,

but when the 100 mg cocktail is induced the FASN start to decrease from 2.73e−6

to 2.70e−6. If patient is suffering from breast cancer due to overexpression of
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FAS in lipogensis which is strongly responsible for more de novo lipogensis w.r.t

compensating energy level for the cancerous cells, intake the given drug cocktail

continuously then the level of FAS will gradually be down-regulated.

4.7.3 Dose with 170mg Drug

Similarly several other dose values were also induced in the model to identify the

change in the level of FASN

 

Figure 4.15: simulations of FASN for repeated dose.

In the second simulation the same drug cocktail is applied with FAS with increase

dose of 170 mg and at that stage it applied with interval of 3 days. Above graph

clearly represents that with intake of drug cocktail the FAS level decreases at the

same rate from 2.73e−6 to 2.718e−6 but after three days when the dose intake

stops then level of FAS starts increasing gradually from 2.718e−6 to 2.72e−6. Then

again with the intake of drug cocktail, FAS is down regulated from 2.72e−6 to

2.714e−6. At the end of 2nd interval when dose ends again FAS again is regulated

from 2.714e−6 to 2.716e−6, with the start of 3rd interval along with dose FAS

again shows down regulation from 2.716e−6 to 2.70e−6. From the above discussion
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it is clear that for the controlled FAS level patient has to intake drug cocktail

regularly for its proper down regulation otherwise it will start up-regulating for

energy homeostasis of cancer cells.

FAS articulation is related with an increased danger of breast cancer reoccurrence

[35] and up control of FAS gives chemoprotection; down direction of FAS causing

breast tumor cell line to pretend more sensitive to chemotherapy drugs. Insulin-like

growth factor (IGF)-I have been appeared to up-regulate FAS in malignant breast

cancer cells and when FAS was suppressed, IGF-I intervened cell development was

hindered [9,86,94].

The rate of lipogenesis is additionally essentially elevated in tumor cells with a

specific end goal to make up for the higher rate of expansion. It is progressively

obvious that numerous genes engaged in metabolic pathways assume coordinate

parts in tumorigenesis and tumor development [29].

The formation of palmitate from acetyl-CoA and malonyl-CoA is catalyzed by

FASN. Acetyl-CoA-carboxylase is another critical enzyme in fatty acid formation

whose work is to feed FASN with malonyl-CoA which is catalyzed to malonyl-CoA

from the ATP-subordinate carboxylation of acetyl-CoA, and in this manner going

about as the rate-limiting enzymes in the fatty acid formation pathway [103].

Target gene expression contemplates recognized up regulated transcripts associ-

ated with pathway of cholesterol amalgamation and lipogenesis, fundamental for

improvement and development of huge forms of cancer cells. Lipogenic catalysts,

for example, acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY) and fatty

acid synthase (FASN) show increased expression level that enhances the forma-

tion of cholesterol; express all inclusive changes phenotypically in many cancer.

Increased level of expression of FASN expects reduced prognosis in cancer patients.

The level of expression shows up at the sore stage of precancerous and continues

in prostate and breast tumors.



Results and Discussion 66

4.8 Differential Equations of Lipogensis Pathways

Several differential equations were developed for the model shown below.

α = 1/Lipogenesis, β = Reaction

d(TG)/dt =α*(β1.kf*TG + β5.kf*[fatty acid]-β5.kr*TG)

d(palmitate)/dt = α*(-β1.kf*TG+β2.kf*[Malonyl-Coa])

d([Malonyl-Coa])/dt=α*(-β2.kf*[Malonyl-Coa]) + β3.kf*[Acetyl coa] + β7.kf*[6PG]*[6

phosphogluconatedehydrogenase] + β8.kf*[Acetyl Coa]*FASN)

d([fatty acid])/dt =α*(-β5.kf*[fatty acid]-β5.kr*TG-β6.kf*[fatty acid]-β6.kr*[Acetyl

Coa])

d([Acetyl Coa])/dt =α*(β6.kf*[fatty acid]-β6.kr*[Acetyl Coa] - β8.kf*[Acetyl Coa]*FASN)

d([6PG])/dt =α*(-β7.kf*[6PG]*[6 phosphogluconatedehydrogenase] + β9.kf*[6 phosphoglucono-

siga-lactone]*lactonase)

d([Acetyl coa])/dt=α*(-β3.kf*[Acetyl coa] + β4.kf*Citrate)

d([6 phosphoglucono-siga-lactone])/dt =α*(-β9.kf*[6 phosphoglucono-siga-lactone]*lactonase

+ β10.kf*[glucose 6 phosphate]*[G6P dehydrogenase])

d([glucose 6 phosphate])/dt = α*(-β10.kf*[glucose 6 phosphate]*[G6P dehydroge-

nase] + β11.kf*Glucose - β13.kf*[glucose 6 phosphate]-β13.kr*[pyruvic acid])

d(Glucose)/dt = α*(-β11.kf*Glucose + β12.kf*Carbohydrate)

d(Carbohydrate)/dt = α*(-β12.kf*Carbohydrate)

d([pyruvic acid])/dt = α*(β13.kf*[glucose 6 phosphate]-β13.kr*[pyruvic acid] - β14.kf*[pyruvic

acid])

d(pyruvate)/dt=α*(β14.kf*[pyruvic acid] - β15.kf*pyruvate)

d([citric avid cycle])/dt =α*(β15.kf*pyruvate -β16.kf*[citric acid cycle])
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d(CO2)/dt =α*(β16.kf*[citric acid cycle])

d(Citrate)/dt =α*(-β4.kf*Citrate+ β16.kf*[citric acid cycle])

d([6 phosphogluconatedehydrogenase])/dt = α*(-β7.kf*[6PG]*[6 phosphogluconat-

edehydrogenase])

d(lactonase)/dt =α*(-β9.kf*[6 phosphoglucono-siga-lactone]*lactonase)

d([G6P dehydrogenase])/dt =?α*(-β10.kf*[glucose 6 phosphate]*[G6P dehydroge-

nase])

d(FASN)/dt =α*(-β8.kf*[Acetyl Coa]*FASN)
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Conclusion

FAS articulation is related with an increased danger of breast cancer reoccurrence

[35] and control of FAS gives chemoprotection; down direction of FAS causing

breast tumor cell line to pretend more sensitive to chemotherapy drugs. Insulin-like

growth factor (IGF)- I have been appeared to up direct FAS in malignant breast

cancer cells and when FAS was suppressed, IGF-I intervened cell development was

hindered [9][86][94]. The formation of palmitate from acetyl-CoA and malonyl-

CoA is catalyzed by FASN. Acetyl-CoA-carboxylase is another critical enzyme

in fatty acid formation whose function is to feed FASN with malonyl-CoA which

is catalyzed to malonyl-CoA from the ATP-subordinate carboxylation of acetyl-

CoA, and in this manner going about as the rate-limiting enzymes in the fatty

acid formation pathway [103].

A comprehensive pathway was retrived and verified from literature and updated

by introducing the missing enzymes and proteins from literature, verification was

given in table 4.1 and 4.2. Then with the help of Protparam tool, all physio-

chemical and ADME properties of all metabolites were estimated. LD50 value

and toxicity were calculated by using Protox server tool and parameters for all

metabolites were calculted by using these properties and parameter estimation

equation of half life. As in normal metabolic pathways of cells, FASN express

itself rarely because glycolysis was enough for compensating their energy demand.

But in case of cancer, FASN is overexpression for compensating the energy demand

68
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of abnormally growing cells. So model of overexpression of FASN was developed

using toolbox in Simbiology MATLAB for the simulation of over expression of

FASN.

There are numerous inhibitors of FASN in already working in Laboratory with

best effects but some of them have high toxicity level. For designing a best drug

with minimum toxicity the drugs which are FDA approved drugs are already

available at drugbank,were used. After calculating all the physiochemical and

ADME properties of drugs their five different cominations i.e. drug cocktails are

made using Chemdraw tool. The properties of all drug cocktails were calculated

using different tools i.e. swissadme, ACD/I-lab reports and protox server for

calculating toxicity and LD50 values of cocktails. Depending upon the fitness

value i.e. toxicity of cocktail, the best cocktail 2 choose as a drug and integrated

into pathway showing up regulation of FAS gene. After the integration of dose

with pathway, the expression of FAS shows down regulation.

However, in future it is possible to apply the same process on the Signaling pathway

for controlling the regulation of FASN and other its key controllers e.g. HER-

2, mTOR and SREBP-1 genes which are responsible directly for the production

of FASN and level of its regulation. and along with toxicity, stability is also a

important facto which can be focused in future work for the improvment of drug

cocktails. As this is a in silico approach so in future work this drug cocktail can

be tried in wet labs of clinics for therapeutic purposes. And PBPK modeling is

also a innovative approach that can be applied for reducing the need of wet lab

trial.
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